Menu Close

answer-to-26024-let-put-c-0-cos-ax-2-dx-and-c-0-sin-ax-2-dx-ew-have-c-is-0-e-iax-2-dx-2-1-R-e-iax-2-dx-and-i-put-x-1-2-r-x-notation-




Question Number 26107 by abdo imad last updated on 19/Dec/17
answer to 26024    let  put c= ∫_0 ^∞  cos(ax^2 )dx   and   c =  ∫_0 ^∞  sin(ax^2 )dx  ew have  c−is  =   ∫_0 ^∞   e^(−iax^2 ) dx   =2^(−1)   ∫_R  e^(−iax^2 ) dx   and  i put  x^(1/2)  =r(x)(notation)  so  2(c−is)  =   ∫_R   e^(−(r(ia)x)^2 ) dx  and by the changement   t= r(ia) x   we find  2(c+is)  =   (r(ia))^(−1)  ∫_R  e^(−t^2 ) dt   =  r(π)/r(ia)  but  r(ia)  =r(i) r(a)  =  r(a) e^    −−>2(c+is)    =  r(π) r(a)^(−1)   e^(−iπ/4)  ^)   −−>  c =   r(2π)/_(4r(a))   and   s  =  r(2π)/_(4r(a))
$${answer}\:{to}\:\mathrm{26024}\:\:\:\:{let}\:\:{put}\:{c}=\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({ax}^{\mathrm{2}} \right){dx}\:\:\:{and}\:\:\:{c}\:=\:\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({ax}^{\mathrm{2}} \right){dx} \\ $$$${ew}\:{have}\:\:{c}−{is}\:\:=\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{iax}^{\mathrm{2}} } {dx}\:\:\:=\mathrm{2}^{−\mathrm{1}} \:\:\int_{{R}} \:{e}^{−{iax}^{\mathrm{2}} } {dx}\:\:\:{and}\:\:{i}\:{put} \\ $$$${x}^{\mathrm{1}/\mathrm{2}} \:={r}\left({x}\right)\left({notation}\right)\:\:{so}\:\:\mathrm{2}\left({c}−{is}\right)\:\:=\:\:\:\int_{{R}} \:\:{e}^{−\left({r}\left({ia}\right){x}\right)^{\mathrm{2}} } {dx} \\ $$$${and}\:{by}\:{the}\:{changement}\:\:\:{t}=\:{r}\left({ia}\right)\:{x}\:\:\:{we}\:{find} \\ $$$$\mathrm{2}\left({c}+{is}\right)\:\:=\:\:\:\left({r}\left({ia}\right)\right)^{−\mathrm{1}} \:\int_{{R}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:\:=\:\:{r}\left(\pi\right)/{r}\left({ia}\right)\:\:{but} \\ $$$${r}\left({ia}\right)\:\:={r}\left({i}\right)\:{r}\left({a}\right)\:\:=\:\:{r}\left({a}\right)\:{e}^{} \:\:\:−−>\mathrm{2}\left({c}+{is}\right)\:\:\:\:=\:\:{r}\left(\pi\right)\:{r}\left({a}\right)^{−\mathrm{1}} \:\:{e}^{−{i}\pi/\mathrm{4}} \:\:^{\left.\right)} \\ $$$$−−>\:\:{c}\:=\:\:\:{r}\left(\mathrm{2}\pi\right)/_{\mathrm{4}{r}\left({a}\right)} \:\:{and}\:\:\:{s}\:\:=\:\:{r}\left(\mathrm{2}\pi\right)/_{\mathrm{4}{r}\left({a}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *