Question Number 25821 by abdo imad last updated on 15/Dec/17
$${answer}\:{to}\:{q}\mathrm{25796}\:{f}_{} {ind}\:{the}\:{value}\:{off}\left({x}\right)=\:\int_{\mathrm{0}^{} } ^{\pi_{} } {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\partial{f}/\partial{x}=\:\int_{\mathrm{0}} ^{\pi} \:\:{cos}\theta\left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta=\pi{x}^{−\mathrm{1}} −{x}^{−\mathrm{1}} \int_{\mathrm{0}} ^{\pi} \left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta{and}\:{by}\:{the}\:{changeent}\:{tan}\theta={u}\:{then}\:{the}\:{changement}\:{u}=\left(\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}\right)^{−\mathrm{1}^{} } \right)^{} \:.{t}.{we}\:{find}\:\:\int_{\mathrm{0}} ^{\theta} \left(\mathrm{1}+{xcos}\theta\right)^{−\mathrm{1}} {d}\theta\:\:=\pi\left(\mathrm{1}−{x}^{\mathrm{2}_{} } \right)^{−\mathrm{1}/\mathrm{2}} \\ $$$${so}\:\partial{f}/\partial{x}=\pi{x}^{−\mathrm{1}} −\pi{x}^{−\mathrm{1}} \left(\mathrm{1}−{x}^{−\mathrm{1}/\mathrm{2}} \right)\:{so}\:{f}\left({x}\right)=\:\pi\:{ln}\left({x}\right)−\pi\int^{{x}} \:{t}^{−\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\mathrm{1}/\mathrm{2}} {dt} \\ $$$${but}\:\int\:^{{x}} {t}^{−\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}=−\mathrm{1}.\:\mathrm{2}^{−\mathrm{1}} \:{ln}\left(\left(\mathrm{1}+\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} .\left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \right)^{−\mathrm{1}} \right)\right. \\ $$$${and}\:{f}\left({x}\right)=\pi{ln}\left({x}\right)+\pi.\mathrm{2}^{−\mathrm{1}} {ln}\left(\:\left(\mathrm{1}+\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \left(\left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \right)^{−\mathrm{1}} \:+\beta\right.\right.\right. \\ $$$$\beta={f}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\pi=} {ln}\left(\mathrm{1}+{cos}\theta\right){d}\theta=−\pi{ln}\left(\mathrm{2}\right)\:{so} \\ $$$$\int_{\mathrm{0}} ^{\pi} \left(\mathrm{1}+{xcos}\theta\right){d}\theta\:=\:\pi{lnx}\:+\pi\mathrm{2}^{−\mathrm{1}} {ln}\left(\left(\mathrm{1}+\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}^{} } \right)\left(\left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \right)^{−\mathrm{1}} −\pi{ln}\left(\mathrm{2}\right).\right.\right. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$