Menu Close

answer-to-q25796-f-ind-the-value-off-x-0-pi-ln-1-xcos-d-with-0-lt-x-lt-1-f-x-0-pi-cos-1-xcos-1-d-pix-1-x-1-0-pi-1-xcos-1-d-and-by-the-changeent-tan-u-then-the




Question Number 25821 by abdo imad last updated on 15/Dec/17
answer to q25796 f_ ind the value off(x)= ∫_0^  ^π_  ln(1+xcosθ)dθ with 0<x<1   ∂f/∂x= ∫_0 ^π   cosθ(1+xcosθ)^(−1) dθ=πx^(−1) −x^(−1) ∫_0 ^π (1+xcosθ)^(−1) dθand by the changeent tanθ=u then the changement u=((1+x)(1+x)^(−1^ ) )^  .t.we find  ∫_0 ^θ (1+xcosθ)^(−1) dθ  =π(1−x^2_  )^(−1/2)   so ∂f/∂x=πx^(−1) −πx^(−1) (1−x^(−1/2) ) so f(x)= π ln(x)−π∫^x  t^(−1) (1−t^2 )^(−1/2) dt  but ∫^x t^(−1) (1−t^2 )dt=−1. 2^(−1)  ln((1+(1−x^2 )^(1/2) .(1−(1−x^2 )^(1/2) )^(−1) )  and f(x)=πln(x)+π.2^(−1) ln( (1+(1−x^2 )^(1/2) ((1−(1−x^2 )^(1/2) )^(−1)  +β  β=f(1)=∫_0 ^(π=) ln(1+cosθ)dθ=−πln(2) so  ∫_0 ^π (1+xcosθ)dθ = πlnx +π2^(−1) ln((1+(1−x^2 )^(1/2^ ) )((1−(1−x^2 )^(1/2) )^(−1) −πln(2).
answertoq25796findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1f/x=0πcosθ(1+xcosθ)1dθ=πx1x10π(1+xcosθ)1dθandbythechangeenttanθ=uthenthechangementu=((1+x)(1+x)1).t.wefind0θ(1+xcosθ)1dθ=π(1x2)1/2sof/x=πx1πx1(1x1/2)sof(x)=πln(x)πxt1(1t2)1/2dtbutxt1(1t2)dt=1.21ln((1+(1x2)1/2.(1(1x2)1/2)1)andf(x)=πln(x)+π.21ln((1+(1x2)1/2((1(1x2)1/2)1+ββ=f(1)=0π=ln(1+cosθ)dθ=πln(2)so0π(1+xcosθ)dθ=πlnx+π21ln((1+(1x2)1/2)((1(1x2)1/2)1πln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *