Menu Close

any-one-can-explain-me-how-to-change-decimal-number-to-biner-number-i-m-forgot-example-315-10-2-thank-you-




Question Number 113134 by bemath last updated on 11/Sep/20
any one can explain me how to  change decimal number to   biner number. i′m forgot.  example (315)_(10)  = (...)_2   thank you
anyonecanexplainmehowtochangedecimalnumbertobinernumber.imforgot.example(315)10=()2thankyou
Commented by I want to learn more last updated on 11/Sep/20
                   2                   315             Remainder             −−−−∣−−−−−∣−−−−−−−−                     2           ∣       157          ∣               1                            2           ∣         78           ∣               1                            2           ∣         39           ∣               0                            2           ∣         19           ∣               1                            2           ∣          9             ∣               1                            2           ∣          4             ∣               1                            2           ∣          2             ∣               0                            2           ∣          1             ∣               0                            2           ∣          0             ∣               1         read the remainder from bottom to top        315_(10)    =   100111011_2
2315Remainder21571278123902191291241220210201readtheremainderfrombottomtotop31510=1001110112
Commented by bemath last updated on 11/Sep/20
thank you friend
thankyoufriend
Answered by MJS_new last updated on 11/Sep/20
find the largest n with 2^n ≤315  ⇒ n=8  (315)_(10) =(1a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0 )_2   315−2^8 =59  find the largest n with 2^n ≤59  ⇒ n=5  (315)_(10) =(1001a_4 a_3 a_2 a_1 a_0 )_2   59−2^5 =27  ...
findthelargestnwith2n315n=8(315)10=(1a7a6a5a4a3a2a1a0)231528=59findthelargestnwith2n59n=5(315)10=(1001a4a3a2a1a0)25925=27
Commented by bemath last updated on 11/Sep/20
thank you prof
thankyouprof
Answered by mr W last updated on 11/Sep/20
⌊log_2  315⌋=8  315−2^8 =59  ⌊log_2  59⌋=5  59−2^5 =27  ⌊log_2  27⌋=4  27−2^4 =11  ⌊log_2  11⌋=3  11−2^3 =3  ⌊log_2  3⌋=1  3−2^1 =1=2^0   ⇒315=2^8 +2^5 +2^4 +2^3 +2^1 +2^0   =1×2^8 +0×2^7 +0×2^6 +1×2^5 +1×2^4 +1×2^3 +0×2^2 +1×2^1 +1×2^0   =(100111011)_2
log2315=831528=59log259=55925=27log227=42724=11log211=31123=3log23=1321=1=20315=28+25+24+23+21+20=1×28+0×27+0×26+1×25+1×24+1×23+0×22+1×21+1×20=(100111011)2
Commented by bemath last updated on 11/Sep/20
thank you prof
thankyouprof
Answered by Aziztisffola last updated on 11/Sep/20
Commented by bemath last updated on 11/Sep/20
thank you friend
thankyoufriend

Leave a Reply

Your email address will not be published. Required fields are marked *