Menu Close

approximate-0-pi-2-x-sinx-dx-by-simpsom-method-




Question Number 94285 by mathmax by abdo last updated on 17/May/20
approximate ∫_0 ^(π/2)  (x/(sinx))dx by simpsom method
approximate0π2xsinxdxbysimpsommethod
Commented by PRITHWISH SEN 2 last updated on 18/May/20
taking 7 ordinates at x=0,(π/(12)),(π/6),(π/4),(π/3),((5π)/(12)),(π/2)  here  h=(1/6)          x            f(x)= (x/(sin x))       0   ∽             1  =y_0    (considering the limiting value)       (π/(12))                  1.011515 = y_1        (π/6)                   1.047197 = y_2        (π/4)                    1.110720 = y_3         (π/3)                   1.209199 = y_4         ((5π)/(12))                   1.355173 = y_5          (π/2)                   1.570796 = y_6   applying Simpson′s  one third rule  I_(1/3)     = (h/3)[(y_0 +y_6 )+4(y_1 +y_3 +y_5 )+2(y_2 +y_4 )]                = (1/(18)){2.570796+13.909632+4.512792}           = 1.16629  please check.
taking7ordinatesatx=0,π12,π6,π4,π3,5π12,π2hereh=16xf(x)=xsinx01=y0(consideringthelimitingvalue)π121.011515=y1π61.047197=y2π41.110720=y3π31.209199=y45π121.355173=y5π21.570796=y6applyingSimpsonsonethirdruleI13=h3[(y0+y6)+4(y1+y3+y5)+2(y2+y4)]=118{2.570796+13.909632+4.512792}=1.16629pleasecheck.
Commented by mathmax by abdo last updated on 20/May/20
thank you sir.
thankyousir.
Commented by PRITHWISH SEN 2 last updated on 20/May/20
you are welcome
youarewelcome
Answered by mathmax by abdo last updated on 20/May/20
we have f(x) =(x/(sinx)) ⇒∫_a ^b f(x)∼((b−a)/6){ f(a)+4f(((a+b)/2))+f(b)} ⇒  ⇒∫_0 ^(π/2)  (x/(sinx))dx ∼(π/6){ f(0)+4f((π/4)) +f((π/2))} ⇒  ∫_0 ^(π/2)  (x/(sinx))dx ∼(π/6)(1 +4 ×(π/(4×(1/( (√2))))) +(π/2))    ( 1 =lim_(x→0)  (x/(sinx)))  ∫_0 ^(π/2)  (x/(sinx))dx ∼ (π/6)(1+π(√2) +(π/2))
wehavef(x)=xsinxabf(x)ba6{f(a)+4f(a+b2)+f(b)}0π2xsinxdxπ6{f(0)+4f(π4)+f(π2)}0π2xsinxdxπ6(1+4×π4×12+π2)(1=limx0xsinx)0π2xsinxdxπ6(1+π2+π2)

Leave a Reply

Your email address will not be published. Required fields are marked *