Menu Close

Approximate-n-1-n-n-2-1-




Question Number 128931 by Dwaipayan Shikari last updated on 11/Jan/21
Approximate  Σ_(n=1) ^∞ ((√n)/(n^2 +1))
Approximaten=1nn2+1
Commented by Dwaipayan Shikari last updated on 11/Jan/21
I have tried this approximation  Σ_(n=1) ^∞ f(n)=∫_0 ^∞ f(x)dx+lim_(z→∞) ((f(z)+f(1))/2)+Σ_(k=1) ^∞ (β_(2k) /((2k)!))(f^((2k−1)) (z)−f^(2k−1) (0))  Euler Maclaurin sum  f(z)=((√z)/(z^2 +1))  Σ_(n≥0) f(z)=∫_0 ^∞ ((√z)/(z^2 +1))dz +(1/4)+lim_(ϑ→∞) Σ_(k=1) ^∞ (β_(2k) /((2k)!))(f^(2k−1) (ϑ)−f^(2k−1) (0))                =  (π/(2(√2)))+(1/4)±{(Λ^Φ ) }→Harder to approximate  Λ^Φ =Σ_(k=1) ^∞ (β_(2k) /((2k)!))((((∂^(2k−1) (((√z)/(z^2 +1))) )/∂z^(2k−1) )))_0 ^∞
Ihavetriedthisapproximationn=1f(n)=0f(x)dx+limzf(z)+f(1)2+k=1β2k(2k)!(f(2k1)(z)f2k1(0))EulerMaclaurinsumf(z)=zz2+1n0f(z)=0zz2+1dz+14+limϑk=1β2k(2k)!(f2k1(ϑ)f2k1(0))=π22+14±{(ΛΦ)}HardertoapproximateΛΦ=k=1β2k(2k)!((2k1(zz2+1)z2k1))0
Commented by Dwaipayan Shikari last updated on 11/Jan/21
Any better way  sirs?
Anybetterwaysirs?

Leave a Reply

Your email address will not be published. Required fields are marked *