Question Number 95653 by rb222 last updated on 26/May/20

Answered by john santu last updated on 26/May/20
![Arc L = ∫_(0 ) ^1 (√(1+((dy/dx))^2 )) dx (dy/dx) = (9/2)(√x) ∫_0 ^1 (√(1+((81x)/4))) dx = (1/2)∫_0 ^1 (√(4+81x)) dx =(1/2) [(((4+81x)^(3/2) )/((243)/2)) ]_0 ^1 =((85(√(85 )) −8 )/(243))](https://www.tinkutara.com/question/Q95659.png)
Answered by MAB last updated on 26/May/20
![dl=(√((dx)^2 +(dy)^2 )) dl=(√(1+((dy/dx))^2 ))dx l=∫_0 ^1 (√(1+(f ′(x))^2 ))dx l=∫_0 ^1 (√(1+((81)/4)x))dx l=[(8/(243))(1+((81)/4)x)^(3/2) ]_0 ^1 l=((85(√(85))−8)/(243))](https://www.tinkutara.com/question/Q95661.png)
Commented by rb222 last updated on 27/May/20

Commented by MAB last updated on 06/Jun/20
