Menu Close

arc-tan-x-1-x-1-arc-tan-x-1-x-arc-tan-7-for-x-real-number-




Question Number 106286 by bemath last updated on 04/Aug/20
arc tan (((x+1)/(x−1)))+arc tan (((x−1)/x))=arc tan (−7)  for x real number
arctan(x+1x1)+arctan(x1x)=arctan(7)forxrealnumber
Answered by bobhans last updated on 04/Aug/20
→arc tan (((x+1)/(x−1)))+arc tan (((x−1)/x))=arc tan (−7)  tan (arc tan (((x+1)/(x−1)))+arc tan (((x−1)/x)))=tan (arc tan (−7))  ((((x+1)/(x−1))+((x−1)/x))/(1−((x+1)/(x−1)).((x−1)/x))) = −7⇒((x+1)/(x−1))+((x−1)/x)=−7(1−((x^2 −1)/(x^2 −x)))  x^2 +x+x^2 −2x+1=−7(x^2 −x−x^2 +1)  2x^2 −x+1=−7(−x+1)  2x^2 −x+1=7x−7 ⇒2x^2 −8x+8=0  2(x−2)^2  = 0 ⇒x = 2. ★
arctan(x+1x1)+arctan(x1x)=arctan(7)tan(arctan(x+1x1)+arctan(x1x))=tan(arctan(7))x+1x1+x1x1x+1x1.x1x=7x+1x1+x1x=7(1x21x2x)x2+x+x22x+1=7(x2xx2+1)2x2x+1=7(x+1)2x2x+1=7x72x28x+8=02(x2)2=0x=2.
Answered by Dwaipayan Shikari last updated on 04/Aug/20
tan^(−1) (((x+1)/(x−1)))+tan^(−1) (((x−1)/x))  =tan^(−1) (((((x+1)/(x−1))+((x−1)/x))/(1−((x+1)/x))))=tan^(−1) ((((x^2 +x+x^2 −2x+1)/((x−1)x))/(−(1/x))))=tan^(−1) (−7)  ⇒2x^2 −x+1=−7(1−x)  ⇒2x^2 −8x−8=0  ⇒x^2 −4x+4=0⇒x=2
tan1(x+1x1)+tan1(x1x)=tan1(x+1x1+x1x1x+1x)=tan1(x2+x+x22x+1(x1)x1x)=tan1(7)2x2x+1=7(1x)2x28x8=0x24x+4=0x=2

Leave a Reply

Your email address will not be published. Required fields are marked *