Menu Close

arcsin-x-arccos-x-dx-




Question Number 52898 by MJS last updated on 14/Jan/19
∫arcsin x arccos x dx=?
arcsinxarccosxdx=?
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
a=sin^− x  sina=x  sin^(−1) x+cos^(−1) x=(π/2)  ∫a×((π/2)−a)×cosada  (π/2)∫acosada−∫a^2 cosada  I=(π/2)I_1 −I_2   I_1 =∫acosada   I_2 =∫a^2 cosada  I_1 =a∫cosada−∫[(da/da)∫cosada]da  =asina−∫sinada  =asina+cosa+c_1   ←value of I_1   I_2 =∫a^2 cosada  =a^2 sina−∫2asinada  =a^2 sina−I_3   I_3 =∫2asinada  =2a(−cosa)−∫2×−cosada  =−2acosa+2sina  so I_2 =a^2 sina+2acosa−2sina  So I=(π/2)I_1 −I_2   =(π/2)(asina+cosa)−(a^2 sina+2acosa−2sina)+c  =(π/2)(xsin^(−1) x+(√(1−x^2 )) )−[(sin^(−1) x)^2 x+2sin^(−1) x×(√(1−x^2 )) −2x)+c  sir pls check...
a=sinxsina=xsin1x+cos1x=π2a×(π2a)×cosadaπ2acosadaa2cosadaI=π2I1I2I1=acosadaI2=a2cosadaI1=acosada[dadacosada]da=asinasinada=asina+cosa+c1valueofI1I2=a2cosada=a2sina2asinada=a2sinaI3I3=2asinada=2a(cosa)2×cosada=2acosa+2sinasoI2=a2sina+2acosa2sinaSoI=π2I1I2=π2(asina+cosa)(a2sina+2acosa2sina)+c=π2(xsin1x+1x2)[(sin1x)2x+2sin1x×1x22x)+csirplscheck

Leave a Reply

Your email address will not be published. Required fields are marked *