Menu Close

arcsinx-2-dx-




Question Number 91996 by student work last updated on 04/May/20
∫(arcsinx)^2 dx=?
$$\int\left(\mathrm{arcsinx}\right)^{\mathrm{2}} \mathrm{dx}=? \\ $$
Commented by jagoll last updated on 04/May/20
let sin^(−1) (x) = t   x = sin t ⇒dx = cos t dt   ∫ t^2  cos t dt =   t^2 sin t +2t cos t −2sin t + c  = x(sin^(−1) (x))^2  +2(√(1−x^2 )) (sin^(−1) (x))−2x +c
$$\mathrm{let}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:=\:\mathrm{t}\: \\ $$$$\mathrm{x}\:=\:\mathrm{sin}\:\mathrm{t}\:\Rightarrow\mathrm{dx}\:=\:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\: \\ $$$$\int\:\mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\:=\: \\ $$$$\mathrm{t}^{\mathrm{2}} \mathrm{sin}\:\mathrm{t}\:+\mathrm{2t}\:\mathrm{cos}\:\mathrm{t}\:−\mathrm{2sin}\:\mathrm{t}\:+\:\mathrm{c} \\ $$$$=\:\mathrm{x}\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:+\mathrm{2}\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)−\mathrm{2x}\:+\mathrm{c} \\ $$
Commented by jagoll last updated on 04/May/20
��������

Leave a Reply

Your email address will not be published. Required fields are marked *