arctan-x-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62908 by aliesam last updated on 26/Jun/19 ∫arctan(x)xdx Commented by mathmax by abdo last updated on 26/Jun/19 forallxfromRu→arctanuuisintegrableon]0,x]letf(t)=∫0xarctan(tu)uduwehavef′(t)=∫0xarctan(tu)du=byparts[uarctan(tu)]u=0u=x−∫0xut1+t2u2du=xarctan(tx)−12t∫0x2t2u1+t2u2du=xarctan(tx)−12t[ln(1+t2u2)]u=0u=x=xarctan(tx)−12tln(1+t2x2)⇒f(t)=∫0txarctan(ux)du−∫0tln(1+x2u2)2udu+C⇒∫0xarctan(u)udu=f(1)=x∫01arctan(ux)du−∫01ln(1+x2u2)2udu+Cx=0⇒C=0⇒∫0xarctan(u)udu=x∫01arctan(ux)du−∫01ln(1+x2u232udu…becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-dx-Next Next post: tsinh2t-sin3t-find-the-laplace-transformation- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.