Menu Close

are-roots-of-x-2-x-1-0-gt-and-t-n-n-n-n-N-if-b-1-1-b-n-t-n-1-t-n-2-n-2-find-the-value-of-S-n-1-




Question Number 184738 by mnjuly1970 last updated on 11/Jan/23
  α  , β  are roots of  , x^( 2) −x−1=0  (  α > β ) and ,  t_( n) = ((α^( n) − β^( n) )/(α−β))   ( n ∈ N ), if , b_1 =1 , b_( n) = t_( n−1) +t_( n−2)      ( n ≥2 ) find the value of          S = Σ_(n=1) ^∞ (( b_( n) )/(10^( n) )) =?
$$ \\ $$$$\alpha\:\:,\:\beta\:\:{are}\:{roots}\:{of}\:\:,\:{x}^{\:\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\:\:\alpha\:>\:\beta\:\right)\:{and}\:,\:\:{t}_{\:{n}} =\:\frac{\alpha^{\:{n}} −\:\beta^{\:{n}} }{\alpha−\beta} \\ $$$$\:\left(\:{n}\:\in\:\mathbb{N}\:\right),\:{if}\:,\:{b}_{\mathrm{1}} =\mathrm{1}\:,\:{b}_{\:{n}} =\:{t}_{\:{n}−\mathrm{1}} +{t}_{\:{n}−\mathrm{2}} \\ $$$$\:\:\:\left(\:{n}\:\geqslant\mathrm{2}\:\right)\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{b}_{\:{n}} }{\mathrm{10}^{\:{n}} }\:=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by mr W last updated on 11/Jan/23
α,β=((1±(√5))/2)  α+1=α^2   β+1=β^2   α+β=1  αβ=−1  (α−β)^2 =(α+β)^2 −4αβ=5  ⇒α−β=(√5)  t_n =((α^n −β^n )/(α−β))=(1/( (√5)))(α^n −β^n )  b_n =t_(n−1) +t_(n−2) =(1/( (√5)))(α^(n−1) +α^(n−2) −β^(n−1) +β^(n−2) )  =(1/( (√5)))(α^(n−2) (α+1)−β^(n−2) (β+1))  =(1/( (√5)))(α^n −β^n )  (b_n /(10^n ))=(1/( (√5)))[((α/(10)))^n −((β/(10)))^n ]  S=Σ_(n=1) ^∞ (b_n /(10^n ))=(1/( (√5)))(((α/(10))/(1−(α/(10))))−((β/(10))/(1−(β/(10)))))  =(1/( (√5)))((α/(10−α))−(β/(10−β)))  =((10(α−β))/( (√5)(100−10(α+β)+αβ)))  =((10)/(100−10−1))  =((10)/(89))
$$\alpha,\beta=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\alpha+\mathrm{1}=\alpha^{\mathrm{2}} \\ $$$$\beta+\mathrm{1}=\beta^{\mathrm{2}} \\ $$$$\alpha+\beta=\mathrm{1} \\ $$$$\alpha\beta=−\mathrm{1} \\ $$$$\left(\alpha−\beta\right)^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta=\mathrm{5} \\ $$$$\Rightarrow\alpha−\beta=\sqrt{\mathrm{5}} \\ $$$${t}_{{n}} =\frac{\alpha^{{n}} −\beta^{{n}} }{\alpha−\beta}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}} −\beta^{{n}} \right) \\ $$$${b}_{{n}} ={t}_{{n}−\mathrm{1}} +{t}_{{n}−\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}−\mathrm{1}} +\alpha^{{n}−\mathrm{2}} −\beta^{{n}−\mathrm{1}} +\beta^{{n}−\mathrm{2}} \right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}−\mathrm{2}} \left(\alpha+\mathrm{1}\right)−\beta^{{n}−\mathrm{2}} \left(\beta+\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}} −\beta^{{n}} \right) \\ $$$$\frac{{b}_{{n}} }{\mathrm{10}^{{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\alpha}{\mathrm{10}}\right)^{{n}} −\left(\frac{\beta}{\mathrm{10}}\right)^{{n}} \right] \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{b}_{{n}} }{\mathrm{10}^{{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\frac{\alpha}{\mathrm{10}}}{\mathrm{1}−\frac{\alpha}{\mathrm{10}}}−\frac{\frac{\beta}{\mathrm{10}}}{\mathrm{1}−\frac{\beta}{\mathrm{10}}}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\alpha}{\mathrm{10}−\alpha}−\frac{\beta}{\mathrm{10}−\beta}\right) \\ $$$$=\frac{\mathrm{10}\left(\alpha−\beta\right)}{\:\sqrt{\mathrm{5}}\left(\mathrm{100}−\mathrm{10}\left(\alpha+\beta\right)+\alpha\beta\right)} \\ $$$$=\frac{\mathrm{10}}{\mathrm{100}−\mathrm{10}−\mathrm{1}} \\ $$$$=\frac{\mathrm{10}}{\mathrm{89}} \\ $$
Commented by mnjuly1970 last updated on 11/Jan/23
thank you so much sir  W
$${thank}\:{you}\:{so}\:{much}\:{sir}\:\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *