Menu Close

asin-3-bcos-3-sin-2-cos-2-d-




Question Number 26090 by fahim last updated on 19/Dec/17
∫((asin^3 θ+bcos^3 θ)/(sin^2  θ.cos^2  θ))dθ
$$\int\frac{{a}\mathrm{sin}\:^{\mathrm{3}} \theta+{b}\mathrm{cos}\:^{\mathrm{3}} \theta}{\mathrm{sin}^{\mathrm{2}} \:\theta.\mathrm{cos}^{\mathrm{2}} \:\theta}{d}\theta \\ $$
Answered by Joel578 last updated on 19/Dec/17
I = ∫ ((asin^3  θ)/(sin^2  θ cos^2  θ)) dθ + ∫ ((bcos^3  θ)/(sin^2  θ cos^2  θ)) dθ      = a ∫  ((sin θ)/(cos^2  θ)) dθ + b ∫  ((cos θ)/(sin^2  θ)) dθ      = (a/(cos θ))  −  (b/(sin θ))  +  C
$${I}\:=\:\int\:\frac{{a}\mathrm{sin}^{\mathrm{3}} \:\theta}{\mathrm{sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta}\:{d}\theta\:+\:\int\:\frac{{b}\mathrm{cos}^{\mathrm{3}} \:\theta}{\mathrm{sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta}\:{d}\theta \\ $$$$\:\:\:\:=\:{a}\:\int\:\:\frac{\mathrm{sin}\:\theta}{\mathrm{cos}^{\mathrm{2}} \:\theta}\:{d}\theta\:+\:{b}\:\int\:\:\frac{\mathrm{cos}\:\theta}{\mathrm{sin}^{\mathrm{2}} \:\theta}\:{d}\theta \\ $$$$\:\:\:\:=\:\frac{{a}}{\mathrm{cos}\:\theta}\:\:−\:\:\frac{{b}}{\mathrm{sin}\:\theta}\:\:+\:\:{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *