Question Number 102390 by Dwaipayan Shikari last updated on 08/Jul/20

Commented by PRITHWISH SEN 2 last updated on 08/Jul/20

Commented by bobhans last updated on 09/Jul/20

Commented by bemath last updated on 09/Jul/20

Commented by 1549442205 last updated on 09/Jul/20

Answered by Dwaipayan Shikari last updated on 08/Jul/20

Commented by bobhans last updated on 09/Jul/20

Commented by 1549442205 last updated on 09/Jul/20

Commented by PRITHWISH SEN 2 last updated on 09/Jul/20

Commented by bemath last updated on 09/Jul/20

Answered by 1549442205 last updated on 09/Jul/20
)))) (with the condition a^2 +b^2 ≥c^2 ) ⇒ϕ+θ=sin^(−1) ((c/( (√(a^2 +b^2 )))))+2kπ ⇒θ=sin^(−1) ((c/( (√(a^2 +b^2 )))))+2kπ−ϕ ⇒sinθ=sin(sin^(−1) ((c/( (√(a^2 +b^2 )))))−ϕ) =(c/( (√(a^2 +b^2 ))))cosϕ−((√(a^2 +b^2 −c^2 ))/( (√(a^2 +b^2 ))))sinϕ =(c/( (√(a^2 +b^2 )))).(a/( (√(a^2 +b^2 ))))−((√(a^2 +b^2 −c^2 ))/( (√(a^2 +b^2 )))).(b/( (√(a^2 +b^2 )))) =((ac−b(√(a^2 +b^2 −c^2 )))/(a^2 +b^2 )) ⇒cosθ=(1/(a^2 +b^2 ))(√((a^2 +b^2 )^2 −(ac−b(√(a^2 +b^2 −c^2 )^2 )))) ⇒sin2θ=2sinθcosθ=2(((ac−b(√(a^2 +b^2 −c^2 )))/(a^2 +b^2 )))((1/(a^2 +b^2 ))(√((a^2 +b^2 )^2 −(ac−b(√(a^2 +b^2 −c^2 )^2 )))) )=f(a,b,c)](https://www.tinkutara.com/question/Q102458.png)