Assuming-FLT-prove-Fermat-Euler-theorem-a-n-1-n-2-a-n-1-mod-n- Tinku Tara June 4, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 111704 by Aina Samuel Temidayo last updated on 04/Sep/20 AssumingFLT,proveFermat−Eulertheorem:(a,n)=1,n⩾2⇒a∅(n)≡1(modn) Answered by Aina Samuel Temidayo last updated on 04/Sep/20 AssumingFLT(a,n)=1,n⩾2⇒a∅(n)≡1(modn)Ifnisprime,then∅(n)=n−1andEuler′stheoremsaysan−1=1(modn),whichisFermat′stheorem.Sincenisprime,thenallofthenumbers{1,…,n−1}arerelativelyprimeton.⇒∅(n)=n−1Proof:Let∅(n)=k,andlet{a1,a2,…,ak}bearesiduesystemmodn.Imayassumethattheai′slieintherange{1,…,n−1}asareducedresiduesystemmodnisasetofnumbersa1,a2,a3,…,a∅(n)suchthat:−ifi≠j,thenai≠aj(modn).Thatis,thea′saredistinctmodn.−Foreachi,(ai,n)=1.Thatis,allthea′sarerelativelyprimeton.Sincealla′sarerelativelyprimeton,thentheassumptionthattheai′slieintherange{1,…,n−1}iscorrect.Since(a,n)=1,{aa1,…,aak}isanotherreducedresiduesystemmodn.Sincethisisthesamesetofnumbersmodnastheoriginalsystem,thetwosystemsmusthavethesameproductmodn:⇒(aa1)(aa2)…(aak)=a1…ak(modn)⇒ak(a1…ak)=a1…ak(modn)Noweachaiisinvertiblemodn,somultiplyingbothsidesbya1−1…ak−1,wegetak=1(modn)Recallthat∅(n)=k⇒aϕ(n)=1(modn)Hence,proved. Commented by Aina Samuel Temidayo last updated on 05/Sep/20 Isthiscorrect? Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 3x-16-5x-14-x-5-x-2-1-4-dx-Next Next post: find-dx-x-x-1-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.