Menu Close

Assuming-FLT-prove-Fermat-Euler-theorem-a-n-1-n-2-a-n-1-mod-n-




Question Number 111704 by Aina Samuel Temidayo last updated on 04/Sep/20
Assuming FLT, prove Fermat−Euler  theorem: (a,n) =1,n≥2⇒a^(∅(n)) ≡1(mod  n)
AssumingFLT,proveFermatEulertheorem:(a,n)=1,n2a(n)1(modn)
Answered by Aina Samuel Temidayo last updated on 04/Sep/20
  Assuming FLT  (a,n)=1,n≥2⇒a^(∅(n)) ≡1(mod n)  If n is prime,then ∅(n) = n−1 and  Euler′s theorem says a^(n−1) =1(mod n),  which is Fermat′s theorem.  Since n is prime, then all of the  numbers {1,...,n−1} are relatively  prime to n.  ⇒ ∅(n)=n−1    Proof:  Let ∅(n)=k, and let {a_1 ,a_2 ,...,a_k } be a  residue system mod n.   I may assume that the a_i ′s lie in the  range {1,...,n−1} as a reduced  residue system mod n is a set of  numbers   a_1 ,a_2 ,a_3 ,...,a_(∅(n))   such that:  −if i≠j, then a_i ≠a_j (mod n). That is,  the a′s are distinct mod n.  −For each i, (a_i ,n)=1.  That is, all the a′s are relatively prime  to n.  Since all a′s are relatively prime to n,  then the assumption that the a_i ′s lie in  the range {1,...,n−1} is correct.  Since (a,n) =1, {aa_1 ,...,aa_k } is another  reduced residue system mod n. Since  this is the same set of numbers mod n  as the original system, the two  systems must have the same product  mod n:  ⇒ (aa_1 )(aa_2 )...(aa_k ) = a_1 ...a_k (mod n)   ⇒ a^k (a_1 ...a_k ) = a_1 ...a_k (mod n)  Now each a_(i ) is invertible mod n, so  multiplying both sides by  a_1 ^(−1) ...a_k ^(−1) , we get  a^k =1(mod n)  Recall that ∅(n)=k  ⇒ a^(φ(n) ) =1(mod n)  Hence,proved.
AssumingFLT(a,n)=1,n2a(n)1(modn)Ifnisprime,then(n)=n1andEulerstheoremsaysan1=1(modn),whichisFermatstheorem.Sincenisprime,thenallofthenumbers{1,,n1}arerelativelyprimeton.(n)=n1Proof:Let(n)=k,andlet{a1,a2,,ak}bearesiduesystemmodn.Imayassumethattheaislieintherange{1,,n1}asareducedresiduesystemmodnisasetofnumbersa1,a2,a3,,a(n)suchthat:ifij,thenaiaj(modn).Thatis,theasaredistinctmodn.Foreachi,(ai,n)=1.Thatis,alltheasarerelativelyprimeton.Sinceallasarerelativelyprimeton,thentheassumptionthattheaislieintherange{1,,n1}iscorrect.Since(a,n)=1,{aa1,,aak}isanotherreducedresiduesystemmodn.Sincethisisthesamesetofnumbersmodnastheoriginalsystem,thetwosystemsmusthavethesameproductmodn:(aa1)(aa2)(aak)=a1ak(modn)ak(a1ak)=a1ak(modn)Noweachaiisinvertiblemodn,somultiplyingbothsidesbya11ak1,wegetak=1(modn)Recallthat(n)=kaϕ(n)=1(modn)Hence,proved.
Commented by Aina Samuel Temidayo last updated on 05/Sep/20
Is this correct?
Isthiscorrect?

Leave a Reply

Your email address will not be published. Required fields are marked *