Menu Close

Assuming-no-air-resistance-and-angle-of-projection-pi-4-find-the-ratio-of-the-length-of-trajectory-L-of-a-projectile-motion-by-the-time-it-hits-the-ground-to-its-horizontal-range-R-on-ground




Question Number 13705 by ajfour last updated on 22/May/17
Assuming no air resistance,  and angle of projection α=(π/4) ,  find the ratio of the length of  trajectory L of a projectile motion   (by the time it hits the ground)  to its horizontal range R on   ground.      (L/R)=?
Assumingnoairresistance,andangleofprojectionα=π4,findtheratioofthelengthoftrajectoryLofaprojectilemotion(bythetimeithitstheground)toitshorizontalrangeRonground.LR=?
Commented by ajfour last updated on 22/May/17
Commented by mrW1 last updated on 22/May/17
for parabola f(x)=ax^2   the length of the curve from x=0 to  x=b is  l=∫_0 ^b (√(1+((dy/dx))^2 ))dx  =∫_0 ^b (√(1+(2ax)^2 ))dx  =(1/(2a))∫_0 ^(2ab) (√(1+t^2 ))dt  =(1/(4a))[t(√(1+t^2 ))+ln (t+(√(1+t^2 )))]_0 ^(2ab)   =(b/2)×(1/(2ab))(2ab(√(1+(2ab)^2 ))+ln (√(1+(2ab)^2 )))    apply this in our case:  b=(R/2)  height of parabola h is  h=(R/4)×tan α_0 =(R/4)×tan (π/4)=(R/4)  h=a((R/2))^2 =a(R^2 /4)=(R/4)  ⇒a=(1/R)  2ab=2×(1/R)×(R/2)=1    ⇒L=2×(R/4)×(1/1)×[1×(√(1+1^2 ))+ln (1+(√(1+1^2 )))]=(R/2)×[(√2)+ln (1+(√2))]  ⇒(L/R)=(((√2)+ln (1+(√2)))/2)≈1.15
forparabolaf(x)=ax2thelengthofthecurvefromx=0tox=bisl=0b1+(dydx)2dx=0b1+(2ax)2dx=12a02ab1+t2dt=14a[t1+t2+ln(t+1+t2)]02ab=b2×12ab(2ab1+(2ab)2+ln1+(2ab)2)applythisinourcase:b=R2heightofparabolahish=R4×tanα0=R4×tanπ4=R4h=a(R2)2=aR24=R4a=1R2ab=2×1R×R2=1L=2×R4×11×[1×1+12+ln(1+1+12)]=R2×[2+ln(1+2)]LR=2+ln(1+2)21.15
Commented by ajfour last updated on 22/May/17
thank you Sir, our answers even  match!
thankyouSir,ouranswersevenmatch!
Answered by ajfour last updated on 22/May/17
dL=(√(1+((dy/dx))^2 )) dx  dy=(usin α−gt)dt  dx=(ucos α)dt  (dy/dx)=(((usin α−gt)/(ucos α)))  ∫_0 ^(  L) dL=∫_0 ^(  T) (√(1+(((usin α−gt)/(ucos α)))^2 ))(ucos α)dt  for y component of motion  v_y =usin 𝛂−gt       =0   for  t=(T/2)  ⇒ T=((2usin 𝛂)/g)  for  𝛂=(𝛑/4)  ,  T=((u(√2))/g)    .....(i)  L=(u/( (√2)))∫_0 ^(  u(√2)/g) (√(1+(1−((gt(√2))/u))^2 ))dt     let  p=1−((gt(√2))/u)    dp=−((g(√2))/u)dt   ⇒ dt=−(u/(g(√2)))dp  when t=0,  p=1  when t=((u(√2))/g) ,  p=−1  ∴ L=(u/( (√2)))∫_1 ^(  −1) (√(1+p^2 ))(−(u/(g(√2))))dp  L=(u^2 /g)∫_0 ^(  1) (√(1+p^2 ))dp  L=(u^2 /g)[(p/2)(√(1+p^2 ))+(1/2)ln (p+(√(1+p^2 )))]_0 ^1   L=(u^2 /(2g))[(√2)+ln (1+(√2))]  R=(ucos 𝛂)T      =(u/( (√2))) ((u(√2))/g)=(u^2 /g)  so,  (L/R)=(((√2)+ln (1+(√2)))/2) ≈1.148
dL=1+(dydx)2dxdy=(usinαgt)dtdx=(ucosα)dtdydx=(usinαgtucosα)0LdL=0T1+(usinαgtucosα)2(ucosα)dtforycomponentofmotionvy=usinαgt=0fort=T2T=2usinαgforα=π4,T=u2g..(i)L=u20u2/g1+(1gt2u)2dtletp=1gt2udp=g2udtdt=ug2dpwhent=0,p=1whent=u2g,p=1L=u2111+p2(ug2)dpL=u2g011+p2dpL=u2g[p21+p2+12ln(p+1+p2)]01L=u22g[2+ln(1+2)]R=(ucosα)T=u2u2g=u2gso,LR=2+ln(1+2)21.148

Leave a Reply

Your email address will not be published. Required fields are marked *