Question Number 13705 by ajfour last updated on 22/May/17

Commented by ajfour last updated on 22/May/17

Commented by mrW1 last updated on 22/May/17
![for parabola f(x)=ax^2 the length of the curve from x=0 to x=b is l=∫_0 ^b (√(1+((dy/dx))^2 ))dx =∫_0 ^b (√(1+(2ax)^2 ))dx =(1/(2a))∫_0 ^(2ab) (√(1+t^2 ))dt =(1/(4a))[t(√(1+t^2 ))+ln (t+(√(1+t^2 )))]_0 ^(2ab) =(b/2)×(1/(2ab))(2ab(√(1+(2ab)^2 ))+ln (√(1+(2ab)^2 ))) apply this in our case: b=(R/2) height of parabola h is h=(R/4)×tan α_0 =(R/4)×tan (π/4)=(R/4) h=a((R/2))^2 =a(R^2 /4)=(R/4) ⇒a=(1/R) 2ab=2×(1/R)×(R/2)=1 ⇒L=2×(R/4)×(1/1)×[1×(√(1+1^2 ))+ln (1+(√(1+1^2 )))]=(R/2)×[(√2)+ln (1+(√2))] ⇒(L/R)=(((√2)+ln (1+(√2)))/2)≈1.15](https://www.tinkutara.com/question/Q13718.png)
Commented by ajfour last updated on 22/May/17

Answered by ajfour last updated on 22/May/17
![dL=(√(1+((dy/dx))^2 )) dx dy=(usin α−gt)dt dx=(ucos α)dt (dy/dx)=(((usin α−gt)/(ucos α))) ∫_0 ^( L) dL=∫_0 ^( T) (√(1+(((usin α−gt)/(ucos α)))^2 ))(ucos α)dt for y component of motion v_y =usin 𝛂−gt =0 for t=(T/2) ⇒ T=((2usin 𝛂)/g) for 𝛂=(𝛑/4) , T=((u(√2))/g) .....(i) L=(u/( (√2)))∫_0 ^( u(√2)/g) (√(1+(1−((gt(√2))/u))^2 ))dt let p=1−((gt(√2))/u) dp=−((g(√2))/u)dt ⇒ dt=−(u/(g(√2)))dp when t=0, p=1 when t=((u(√2))/g) , p=−1 ∴ L=(u/( (√2)))∫_1 ^( −1) (√(1+p^2 ))(−(u/(g(√2))))dp L=(u^2 /g)∫_0 ^( 1) (√(1+p^2 ))dp L=(u^2 /g)[(p/2)(√(1+p^2 ))+(1/2)ln (p+(√(1+p^2 )))]_0 ^1 L=(u^2 /(2g))[(√2)+ln (1+(√2))] R=(ucos 𝛂)T =(u/( (√2))) ((u(√2))/g)=(u^2 /g) so, (L/R)=(((√2)+ln (1+(√2)))/2) ≈1.148](https://www.tinkutara.com/question/Q13719.png)