Question Number 183202 by liuxinnan last updated on 23/Dec/22
$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{c}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} = \\ $$$${x}_{\mathrm{2}} = \\ $$$${x}_{\mathrm{3}} = \\ $$
Answered by Frix last updated on 23/Dec/22
$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{c}=\mathrm{0} \\ $$$${m}=\frac{{b}}{{a}}\wedge{n}=\frac{{c}}{{a}} \\ $$$${x}^{\mathrm{3}} +{mx}^{\mathrm{2}} +{n}=\mathrm{0} \\ $$$${x}={t}−\frac{{m}}{\mathrm{3}} \\ $$$${t}^{\mathrm{3}} +\frac{{m}^{\mathrm{2}} }{\mathrm{3}}{t}+\frac{\mathrm{2}{m}^{\mathrm{3}} }{\mathrm{27}}+{n}=\mathrm{0} \\ $$$${p}=\frac{{m}^{\mathrm{2}} }{\mathrm{3}}\wedge{q}=\frac{\mathrm{2}{m}^{\mathrm{3}} }{\mathrm{27}}+{n} \\ $$$${t}^{\mathrm{3}} +{pt}+{q}=\mathrm{0} \\ $$$$\mathrm{Depending}\:\mathrm{on}\:{D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\:\underset{<} {\overset{>} {=}}\:\mathrm{0}\:\mathrm{you}\:\mathrm{can}\:\mathrm{use} \\ $$$$\mathrm{Cartano}'\mathrm{s}\:\mathrm{Formula}\:\mathrm{or}\:\mathrm{the}\:\mathrm{Trigonometric} \\ $$$$\mathrm{Formula}: \\ $$$${D}>\mathrm{0}\:\Rightarrow \\ $$$$\:\:\:\:\:{u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}}\wedge{v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{you}\:\mathrm{must}\:\mathrm{take}\:\mathrm{the}\:\mathrm{real}\:\mathrm{roots}:\:\sqrt[{\mathrm{3}}]{−{r}}=−\sqrt[{\mathrm{3}}]{{r}}\right] \\ $$$$\:\:\:\:\:{t}_{\mathrm{1}} ={u}+{v} \\ $$$$\:\:\:\:\:{t}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$$\:\:\:\:\:{t}_{\mathrm{3}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$${D}=\mathrm{0}\wedge{p}\neq\mathrm{0}\wedge{q}\neq\mathrm{0}\:\Leftrightarrow\:\frac{{p}^{\mathrm{3}} }{\mathrm{27}}=−\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow \\ $$$$\:\:\:\:\:{u}={v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:{t}_{\mathrm{1}} =\mathrm{2}\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}}=\frac{\mathrm{3}{q}}{{p}} \\ $$$$\:\:\:\:\:{t}_{\mathrm{2}} ={t}_{\mathrm{3}} =−\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}}=−\frac{\mathrm{3}{q}}{\mathrm{2}{p}} \\ $$$${D}<\mathrm{0}\:\Rightarrow \\ $$$$\:\:\:\:\:{t}_{{k}} =\sqrt[{\mathrm{3}}]{−\frac{\mathrm{4}{p}}{\mathrm{3}}}×\mathrm{cos}\:\left(\frac{\mathrm{2}\pi{k}+\mathrm{cos}^{−\mathrm{1}} \:\left(−\frac{{q}}{\mathrm{2}}×\sqrt{−\frac{\mathrm{27}}{{p}^{\mathrm{3}} }}\right)}{\mathrm{3}}\right)\:\mathrm{with}\:{k}=\mathrm{1},\:\mathrm{2},\:\mathrm{3} \\ $$$$\mathrm{You}\:\mathrm{must}\:\mathrm{insert}\:\mathrm{backwards} \\ $$$${p}=\frac{{m}^{\mathrm{2}} }{\mathrm{3}}\wedge{q}=\frac{\mathrm{2}{m}^{\mathrm{3}} }{\mathrm{27}}+{n} \\ $$$${x}_{{k}} ={t}_{{k}} −\frac{{m}}{\mathrm{3}} \\ $$$${m}=\frac{{b}}{{a}}\wedge{n}=\frac{{c}}{{a}} \\ $$$$\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{demanded}\:\mathrm{formula} \\ $$
Answered by mr W last updated on 23/Dec/22
$${we}\:{can}\:{also}\:{solve}\:{for}\:\frac{\mathrm{1}}{{x}}\:{instead}\:{of}\: \\ $$$${for}\:{x}. \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{3}} }+\frac{{b}}{{cx}}+\frac{{a}}{{c}}=\mathrm{0} \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{a}}{{c}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}\left(\frac{{b}}{{c}}\right)^{\mathrm{3}} \\ $$$$\underline{{if}\:\Delta>\mathrm{0}:} \\ $$$$\frac{\mathrm{1}}{{x}_{\mathrm{1}} }=\sqrt[{\mathrm{3}}]{\Delta−\frac{{a}}{\mathrm{2}{c}}}−\sqrt[{\mathrm{3}}]{\Delta+\frac{{a}}{\mathrm{2}{c}}} \\ $$$$\frac{\mathrm{1}}{{x}_{\mathrm{2},\mathrm{3}} }=−\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{\Delta−\frac{{a}}{\mathrm{2}{c}}}−\sqrt[{\mathrm{3}}]{\Delta+\frac{{a}}{\mathrm{2}{c}}}\right)\pm\left(\sqrt[{\mathrm{3}}]{\Delta−\frac{{a}}{\mathrm{2}{c}}}+\sqrt[{\mathrm{3}}]{\Delta+\frac{{a}}{\mathrm{2}{c}}}\right){i} \\ $$$$\underline{{if}\:\Delta=\mathrm{0}:} \\ $$$$\frac{\mathrm{1}}{{x}_{\mathrm{1}} }=−\mathrm{2}\sqrt[{\mathrm{3}}]{\frac{{a}}{\mathrm{2}{c}}} \\ $$$$\frac{\mathrm{1}}{{x}_{\mathrm{2}} }=\frac{\mathrm{1}}{{x}_{\mathrm{3}} }=\sqrt[{\mathrm{3}}]{\frac{{a}}{\mathrm{2}{c}}} \\ $$$$\underline{{if}\:\Delta<\mathrm{0}:} \\ $$$$\frac{\mathrm{1}}{{x}_{\mathrm{1},\mathrm{2},\mathrm{3}} }=\mathrm{2}\sqrt{−\frac{{b}}{\mathrm{3}{c}}}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}{a}}{−\mathrm{2}{b}}\sqrt{−\frac{\mathrm{3}{c}}{{b}}}\right)+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right]\:\:\left({k}=\mathrm{0},\mathrm{1},\mathrm{2}\right) \\ $$