Question Number 154849 by naka3546 last updated on 22/Sep/21

Answered by Mr.D.N. last updated on 24/Sep/21
![ax+y+z=1.....(i) x+ay+z=a.....(ii) x+y+az=a^2 ......(iii) (i)−(ii) ax+y+z = 1 ((−x−ay−z= −a)/(ax+y−x−ay=1−a)) or x(a−1)−y(a−1)=1−a or (a−1)(x−y)=1−a or x−y= ((1−a)/(−(1−a))) x−y= −1......(iv) Again, (ii)×a−(iii) ax+a^2 y+az= a^2 ((−x−y−az =−a^2 )/(ax+a^2 y−x−y= 0)) or x(a−1)+y(a^2 −1)=0 x=− ((y(a^2 −1))/((a−1))) x=−y(a+1).......(v) Substitute the eq^n (v) in eq^n (iv) x−y = −1 − y(a+1)−y= −1 −ya−y−y=−1 − ya−2y = −1 − y(a+2)= −1 y= (1/(a+2)) Put the value of y in (v) x=− y(a+1) x= −(1/(a+2))(a+1) x= −((a+1)/(a+2))//. Now, Put the value of x & y in eq^n (i) for value z. ax+y+z= 1 −a((a+1)/(a+2))+(1/(a+2)) +z=1 ((−(a^2 +a))/(a+2))+(1/(a+2))+z=1 z= 1+((a^2 +a)/(a+2)) −(1/(a+2)) z = 1+((a^2 +a−1)/(a+2)) z= ((a+2+a^2 +a−1)/(a+2))= ((a^2 +2a+1)/(a+2)) z = (((a+1)^2 )/(a+2)) ∴ [x = −((a+1)/(a+2)) , y=(1/(a+2)) & z= (((a+1)^2 )/(a+2)) ]//.](https://www.tinkutara.com/question/Q154882.png)
Commented by Rasheed.Sindhi last updated on 23/Sep/21

Commented by Mr.D.N. last updated on 24/Sep/21

Commented by naka3546 last updated on 22/Sep/21

Commented by naka3546 last updated on 23/Sep/21
