Menu Close

ax-y-z-1-x-ay-z-a-x-y-az-a-2-Find-value-of-x-y-z-in-a-




Question Number 154849 by naka3546 last updated on 22/Sep/21
ax + y + z = 1  x + ay + z = a  x + y + az = a^2   Find  value  of  x, y, z   in  a .
ax+y+z=1x+ay+z=ax+y+az=a2Findvalueofx,y,zina.
Answered by Mr.D.N. last updated on 24/Sep/21
   ax+y+z=1.....(i)     x+ay+z=a.....(ii)    x+y+az=a^2 ......(iii)           (i)−(ii)             ax+y+z  =  1           ((−x−ay−z= −a)/(ax+y−x−ay=1−a))     or     x(a−1)−y(a−1)=1−a      or    (a−1)(x−y)=1−a         or         x−y= ((1−a)/(−(1−a)))          x−y= −1......(iv)    Again,      (ii)×a−(iii)               ax+a^2 y+az= a^2              ((−x−y−az =−a^2 )/(ax+a^2 y−x−y= 0))     or   x(a−1)+y(a^2 −1)=0        x=− ((y(a^2 −1))/((a−1)))        x=−y(a+1).......(v)    Substitute the eq^n (v) in eq^n  (iv)       x−y = −1      − y(a+1)−y= −1    −ya−y−y=−1      − ya−2y = −1     − y(a+2)= −1            y= (1/(a+2))    Put the value of y in (v)      x=− y(a+1)       x= −(1/(a+2))(a+1)     x= −((a+1)/(a+2))//.    Now, Put the value of x & y in eq^n (i)     for value z.     ax+y+z= 1     −a((a+1)/(a+2))+(1/(a+2)) +z=1     ((−(a^2 +a))/(a+2))+(1/(a+2))+z=1    z= 1+((a^2 +a)/(a+2)) −(1/(a+2))    z = 1+((a^2 +a−1)/(a+2))    z= ((a+2+a^2 +a−1)/(a+2))= ((a^2 +2a+1)/(a+2))    z = (((a+1)^2 )/(a+2))    ∴ [x = −((a+1)/(a+2)) , y=(1/(a+2)) & z= (((a+1)^2 )/(a+2)) ]//.
ax+y+z=1..(i)x+ay+z=a..(ii)x+y+az=a2(iii)(i)(ii)ax+y+z=1xayz=aax+yxay=1aorx(a1)y(a1)=1aor(a1)(xy)=1aorxy=1a(1a)xy=1(iv)Again,(ii)×a(iii)ax+a2y+az=a2xyaz=a2ax+a2yxy=0orx(a1)+y(a21)=0x=y(a21)(a1)x=y(a+1).(v)Substitutetheeqn(v)ineqn(iv)xy=1y(a+1)y=1yayy=1ya2y=1y(a+2)=1y=1a+2Putthevalueofyin(v)x=y(a+1)x=1a+2(a+1)x=a+1a+2//.Now,Putthevalueofx&yineqn(i)forvaluez.ax+y+z=1aa+1a+2+1a+2+z=1(a2+a)a+2+1a+2+z=1z=1+a2+aa+21a+2z=1+a2+a1a+2z=a+2+a2+a1a+2=a2+2a+1a+2z=(a+1)2a+2[x=a+1a+2,y=1a+2&z=(a+1)2a+2]//.
Commented by Rasheed.Sindhi last updated on 23/Sep/21
GO^(⌢) O^(⌢) D &  Explained Answer!
GOOD&ExplainedAnswer!
Commented by Mr.D.N. last updated on 24/Sep/21
 No you are right ✓ before  in my explaination has been    going some error now its completly    done solution sir.
Noyouarerightbeforeinmyexplainationhasbeengoingsomeerrornowitscompletlydonesolutionsir.
Commented by naka3546 last updated on 22/Sep/21
thank  you ,  sir .
thankyou,sir.
Commented by naka3546 last updated on 23/Sep/21
I  got  that   y = (1/(a+2))  ;  x = −((a+1)/(a+2)) ;  z = (((a+1)^2 )/(a+2))  Am  I  wrong, sir ?
Igotthaty=1a+2;x=a+1a+2;z=(a+1)2a+2AmIwrong,sir?

Leave a Reply

Your email address will not be published. Required fields are marked *