Menu Close

B-a-b-0-1-x-a-1-1-x-b-1-dx-s-0-t-s-1-e-t-dt-Why-B-a-b-a-b-a-b-




Question Number 173976 by savitar last updated on 22/Jul/22
      B(a,b)=∫_0 ^1  x^(a−1) (1−x)^(b−1) dx          Γ(s)= ∫_0 ^∞ t^(s−1) e^(−t) dt      Why    B(a,b)= ((Γ(a)Γ(b))/(Γ(a+b))) ?
B(a,b)=01xa1(1x)b1dxΓ(s)=0ts1etdtWhyB(a,b)=Γ(a)Γ(b)Γ(a+b)?
Answered by aleks041103 last updated on 22/Jul/22
If f(x)=x^(a−1)  and g(x)=x^(b−1)   also h(t)=(f∗g)(t)=∫_0 ^( t) f(x)g(t−x)dx is the convolution  ⇒h(t)=∫_0 ^( t) x^(a−1) (t−x)^(b−1) dx  x=ty⇒dx=t dy  ⇒h(t)=∫_0 ^( 1) t^(a−1) y^(a−1) t^(b−1) (1−y)^(b−1) tdy=  =t^(a+b−1) ∫_0 ^( 1) t^(a−1) (1−y)^(b−1) dy=  =B(a,b)t^(a+b−1)   for convolution:  H(s)=F(s)G(s)  where F,G,H are the laplace transforms  of f,g,h respectively.  Since L{x^p }(s)=((Γ(p+1))/s^(p+1) ), then  H(s)=B(a,b)((Γ(a+b))/s^(a+b) )  F(s)=((Γ(a))/s^a ) and G(s)=((Γ(b))/s^b )  ⇒((Γ(a)Γ(b))/s^(a+b) )=B(a,b)((Γ(a+b))/s^(a+b) )  ⇒B(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))
Iff(x)=xa1andg(x)=xb1alsoh(t)=(fg)(t)=0tf(x)g(tx)dxistheconvolutionh(t)=0txa1(tx)b1dxx=tydx=tdyh(t)=01ta1ya1tb1(1y)b1tdy==ta+b101ta1(1y)b1dy==B(a,b)ta+b1forconvolution:H(s)=F(s)G(s)whereF,G,Harethelaplacetransformsoff,g,hrespectively.SinceL{xp}(s)=Γ(p+1)sp+1,thenH(s)=B(a,b)Γ(a+b)sa+bF(s)=Γ(a)saandG(s)=Γ(b)sbΓ(a)Γ(b)sa+b=B(a,b)Γ(a+b)sa+bB(a,b)=Γ(a)Γ(b)Γ(a+b)
Commented by savitar last updated on 22/Jul/22
Very nice sir
Verynicesir

Leave a Reply

Your email address will not be published. Required fields are marked *