Menu Close

b-a-x-a-b-x-




Question Number 189825 by TUN last updated on 22/Mar/23
∫^b _a (√((x−a)(b−x)))=¿
ab(xa)(bx)=¿
Answered by Frix last updated on 14/Apr/23
circle:  (x−((a+b)/2))^2 +y^2 =(((a−b)^2 )/4)=r^2  ⇒ r=((∣a−b∣)/2)  ⇔  y=±(√((x−a)(b−x)))  ⇒  ∫(√((x−a)(b−x))) dx=((r^2 π)/2)=(((a−b)^2 π)/8)
circle:(xa+b2)2+y2=(ab)24=r2r=ab2y=±(xa)(bx)(xa)(bx)dx=r2π2=(ab)2π8
Answered by Mathspace last updated on 24/Mar/23
(√(x−a))=t⇒x−a=t^2  ⇒x=t^2 +a  I=∫_0 ^(√(b−a))   t(√(b−a−t^2 ))(2t)dt  =2∫_0 ^(√(b−a)) t^2 (√(b−a−t^2 ))dt  =_(t=(√(b−a))y)    2∫_0 ^1 (b−a)y^2 (√(b−a))(√(1−y^2 ))(√(b−a))dy  =2(b−a)^2 ∫_0 ^1 y^2 (√(1−y^2 ))dy  ∫_0 ^1 y^2 (√(1−y^2 ))dy=_(y=sint) ∫_0 ^(π/2) sin^2 tcost cost dt  =∫_0 ^(π/2) (sint cost)^2 dt  =(1/4)∫_0 ^(π/2) sin^2 (2t)dt  =(1/4)∫_0 ^(π/2) ((1−cos(4t))/2)dt  =(1/8).(π/2)−(1/(8.4))[sin(4t)]_0 ^(π/2) (→0)  =(π/(16)) ⇒I=2(b−a)^2 .(π/(16))  =(π/8)(b−a)^2   here we have supposed a≤b
xa=txa=t2x=t2+aI=0batbat2(2t)dt=20bat2bat2dt=t=bay201(ba)y2ba1y2bady=2(ba)201y21y2dy01y21y2dy=y=sint0π2sin2tcostcostdt=0π2(sintcost)2dt=140π2sin2(2t)dt=140π21cos(4t)2dt=18.π218.4[sin(4t)]0π2(0)=π16I=2(ba)2.π16=π8(ba)2herewehavesupposedab

Leave a Reply

Your email address will not be published. Required fields are marked *