Menu Close

B-sin-2x-1-cos-2x-1-dx-




Question Number 166488 by bobhans last updated on 21/Feb/22
   B=∫ (√((sin 2x−1)/(cos 2x−1))) dx =?
$$\:\:\:\mathrm{B}=\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{1}}{\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}}\:\mathrm{dx}\:=? \\ $$
Answered by greogoury55 last updated on 21/Feb/22
   B=∫ (√((1−sin 2x)/(1−cos 2x))) dx     B=∫ (√((sin^2 x+cos^2 x−2sin x cos x)/(2sin^2 x))) dx     B=(1/( (√2))) ∫ ((∣sin x−cos x∣)/(∣sin x∣)) dx   → { ((∣sin x−cos x∣= { ((sin x−cos x)),((cos x−sin x)) :})),((∣sin x∣= { ((sin x)),((−sin x)) :})) :}     B_1 =(1/( (√2)))∫(1−cot x)dx=(1/( (√2)))(x−ln ∣sin x∣)+c    B_2 =(1/( (√2)))∫(−1+cot x)dx=(1/( (√2)))(−x+ln ∣sin x∣)+c
$$\:\:\:{B}=\int\:\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}}\:{dx} \\ $$$$\:\:\:{B}=\int\:\sqrt{\frac{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{2sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{2sin}\:^{\mathrm{2}} {x}}}\:{dx} \\ $$$$\:\:\:{B}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int\:\frac{\mid\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\mid}{\mid\mathrm{sin}\:{x}\mid}\:{dx} \\ $$$$\:\rightarrow\begin{cases}{\mid\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\mid=\begin{cases}{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}\\{\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}\end{cases}}\\{\mid\mathrm{sin}\:{x}\mid=\begin{cases}{\mathrm{sin}\:{x}}\\{−\mathrm{sin}\:{x}}\end{cases}}\end{cases} \\ $$$$\:\:\:{B}_{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left(\mathrm{1}−\mathrm{cot}\:{x}\right){dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left({x}−\mathrm{ln}\:\mid\mathrm{sin}\:{x}\mid\right)+{c} \\ $$$$\:\:{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left(−\mathrm{1}+\mathrm{cot}\:{x}\right){dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(−{x}+\mathrm{ln}\:\mid\mathrm{sin}\:{x}\mid\right)+{c} \\ $$$$\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *