Question Number 107923 by bemath last updated on 13/Aug/20

Answered by 1549442205PVT last updated on 13/Aug/20
![Set (1/x)−1=t^2 ⇒−(1/x^2 )dx=2tdt⇒dx=−2tx^2 dt t(x=1)=0,t(x=0)=∞ x=(1/( (√(1+t^2 ))))⇒I=∫_0 ^∞ x^(9/2) (xt^2 )^(1/2) 2tx^2 dt =2∫_0 ^∞ x^7 t^2 dt=2∫_0 ^∞ ((t^2 dt)/( (√((1+t^2 )^7 )))) =2∫_1 ^∞ ((t^2 +1−1)/((1+t^2 )^3 (√(1+t^2 ))))dt=2∫(dt/((1+t^2 )^2 (√(1+t^2 )))) −2∫_0 ^∞ (dt/((1+t^2 )^3 (√(1+t^2 ))))= Set t=tanϕ⇒dt=(1+t^2 )dϕ I=2∫_0 ^(π/2) (dϕ/((1+tan^2 ϕ)(√(1+tan^2 ϕ))))) −2∫_0 ^(π/2) (dϕ/((1+tan^2 ϕ)^2 (√(1+tan^2 ϕ))))) =2∫_0 ^(π/2) cos^3 ϕdϕ−2∫_0 ^(π/2) cos^5 dϕ =2∫_0 ^(π/2) (1−sin^2 ϕ)dsinϕ−2∫_0 ^(π/2) (1−sin^2 ϕ)^2 dsinϕ =(2sinϕ−((2sin^3 ϕ)/3))∣_0 ^(π/2) −2∫_0 ^(π/2) [1−2sin^2 ϕ+sin^4 ϕ)dsinϕ =2−(2/3)−2[sinϕ−(2/3)sin^3 ϕ+((sin^5 ϕ)/5)]_0 ^(π/2) =2−(2/3)−2(1−(2/3)+(1/5))=(4/(15))](https://www.tinkutara.com/question/Q107961.png)
Answered by bobhans last updated on 13/Aug/20
![((BobHans)/Π) I=−(2/7)∫_0 ^1 x^(9/2) d(1−x)^(7/2) = −(2/7)[ x^(9/2) (1−x)^(7/2) ]_0 ^1 + (9/7)∫_0 ^1 x^(7/2) (1−x)^(7/2) dx let J = ∫_0 ^1 x^(7/2) (1−x)^(7/2) dx=(9/7)∫_0 ^1 (x−x^2 )^(7/2) dx J=(9/7)∫_0 ^1 [ (1/4)−((1/2)−x)^2 ]^(7/2) dx set (1/2)−x = z J=(9/(7×2^8 )) ∫_(−π/2) ^(π/2) cos^8 z dz Reduction formula J_n = ((n−1)/n).J_(n−2) ⇒J_8 = (7/8).(5/6).(3/4).(1/2).J_0 J_8 = ((35)/(128)).[(π/2)−(−(π/2))]= ((35π)/(128)) conclusion I= (9/(7×2^8 )) ×((35π)/(128)) = ((45π)/(32768)).](https://www.tinkutara.com/question/Q107963.png)
Commented by bemath last updated on 14/Aug/20

Answered by mathmax by abdo last updated on 13/Aug/20

Commented by bemath last updated on 14/Aug/20
