Menu Close

bemath-0-2-x-8-x-3-1-3-dx-




Question Number 107184 by bemath last updated on 09/Aug/20
       @bemath@  ∫_0 ^2  x ((8−x^3 ))^(1/3)  dx =?
@bemath@20x8x33dx=?
Answered by john santu last updated on 09/Aug/20
Commented by john santu last updated on 09/Aug/20
typo 8v = x^3
typo8v=x3
Commented by bobhans last updated on 09/Aug/20
typo the last line : ((16π)/(9(√3)))
typothelastline:16π93
Commented by john santu last updated on 09/Aug/20
haha...thanks
hahathanks
Answered by 1549442205PVT last updated on 12/Aug/20
  Set (8/x^3 )−1=t^3 ⇒3t^2 dt=−((24)/x^4 )dx  ⇒^3 (√(8−x^3 )) =xt,dx=−((x^4 t^2 dt)/8)   ⇒F=∫((x^2 t.x^4 t^2 )/(−8))dt=−(1/8)∫ t^3 x^6 dt  =((−1)/8)∫t^3 .((8/(1+t^3 )))^2 dt=−8∫(t^3 /((1+t^3 )^2 ))dt  =−8∫((t^3 +1−1)/((1+t^3 )^2 ))dt=−8∫(dt/(1+t^3 ))−8∫(dt/((1+t^3 )^2 ))  (1/(1+t^3 ))=(a/(1+t))+((bt+c)/(t^2 −t+1))⇔(((a+b)t^2 +(b+c−a)t+a+c)/((1+t)(t^2 −t+1)))=(1/(t^3 +1))  ⇔ { ((a+b=0)),((b+c−a=0)),((a+c=1)) :} ⇔ { ((a=1/3)),((b=−1/3)),((c=2/3)) :}  A=∫(dt/(1+t^3 ))=∫(dt/(3(1+t)))−∫(((t−2)dt)/(3(t^2 −t+1)))  =(1/3)lnt−(1/6)∫((2t−1−3)/((t^2 −t+1)))dt=(1/3)lnt  −(1/6)∫((d(t^2 −t+1))/(t^2 −t+1))+(1/2)∫(dt/((t−(1/2))^2 +(((√3)/2))^2 ))  =(1/3)lnt−(1/6)ln(t^2 −t+1)+(1/2)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))  B=(1/((1+t^3 )^2 ))=[(1/3)((1/(t+1))−((t−2)/(t^2 −t+1)))]^2   9B=(1/((1+t)^2 ))−((t^2 −4t+4)/((t^2 −t+1)^2 ))−((2(t−2))/((t+1)(t^2 −t+1)))  =(1/((1+t)^2 ))−((t^2 −t+1−3t+3)/((t^2 −t+1)^2 ))−(2/(t^2 −t+1))+2((1/(t+1))−((t−2)/(t^2 −t+1)))  =(1/((1+t)^2 ))−(1/(t^2 −t+1))+((3(t−1))/((t^2 −t+1)^2 ))−(2/(t^2 −t+1))+(2/(t+1))−((2(t−2))/(t^2 −t+1))  =(1/((t+1)^2 ))+(2/(t+1))+((3(t−1))/((t^2 −t+1)^2 ))−((2t−1)/(t^2 −t+1))  ∫(dt/((1+t^3 )^2 ))=∫((1/((t+1)^2 ))+(2/(t+1))+((3(t−1))/((t^2 −t+1)^2 ))−((2t−1)/(t^2 −t+1)))dt  =∫((d(t+1))/((t+1)^2 ))+2∫((d(t+1))/(t+1))+(3/2)∫((2t−1)/((t^2 −t+1)^2 ))dt−(3/2)∫(dt/((t^2 −t+1)^2 ))−∫ ((d(t^2 −t+1))/(t^2 −t+1))  =−(1/(t+1))+2ln(t+1)−(3/(2(t^2 −t+1)))−ln(t^2 −t+1)−(3/(2(t^2 −t+1)^2 ))  I_2 =∫(dt/((t^2 −t+1)^2 ))=∫((d(t−(1/2)))/([(t−(1/2))^2 +(((√3)/2))^2 ]^2 )).Set u=t−(1/2),a=((√3)/2)  I_2 =∫(du/((u^2 +a)^2 ))=(1/(2a^2 (2−1))).(u/((u^2 +a^2 )^(2−1) ))+(1/a^2 ).((2.2−3)/(2.2−2)).I_1   =(2/3).(u/((u^2 +a^2 )))+(4/3).(1/2)∫(du/(u^2 +a^2 ))  =(2/3).((t−(1/2))/((t^2 −t+1)))+(2/3).(2/( (√3)))tan^(−1) (((2t−1)/( (√3))))  =((2t−1)/(3(t^2 −t+1)))+(4/(3(√3)))tan^(−1) (((2t−1)/( (√3))))  Hence,  9B=((−1)/(t+1))+2ln(t+1)−(3/(2(t^2 −t+1)))−ln(t^2 −t+1)−(3/(2(t^2 −t+1)^2 ))  =((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−3I_2   =((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−((2t−1)/(t^2 −t+1))−(4/( (√3)))tan^(−1) (((2t−1)/( (√3))))  F=−8A−8B=−8[(1/3)lnt−(1/6)ln(t^2 −t+1)+(1/2)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))]  −(8/9)[=((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−((2t−1)/(t^2 −t+1))−(4/( (√3)))tan^(−1) (((2t−1)/( (√3))))]
Set8x31=t33t2dt=24x4dx38x3=xt,dx=x4t2dt8F=x2t.x4t28dt=18t3x6dt=18t3.(81+t3)2dt=8t3(1+t3)2dt=8t3+11(1+t3)2dt=8dt1+t38dt(1+t3)211+t3=a1+t+bt+ct2t+1(a+b)t2+(b+ca)t+a+c(1+t)(t2t+1)=1t3+1{a+b=0b+ca=0a+c=1{a=1/3b=1/3c=2/3A=dt1+t3=dt3(1+t)(t2)dt3(t2t+1)=13lnt162t13(t2t+1)dt=13lnt16d(t2t+1)t2t+1+12dt(t12)2+(32)2=13lnt16ln(t2t+1)+12×23tan1(2x13)B=1(1+t3)2=[13(1t+1t2t2t+1)]29B=1(1+t)2t24t+4(t2t+1)22(t2)(t+1)(t2t+1)=1(1+t)2t2t+13t+3(t2t+1)22t2t+1+2(1t+1t2t2t+1)=1(1+t)21t2t+1+3(t1)(t2t+1)22t2t+1+2t+12(t2)t2t+1=1(t+1)2+2t+1+3(t1)(t2t+1)22t1t2t+1dt(1+t3)2=(1(t+1)2+2t+1+3(t1)(t2t+1)22t1t2t+1)dt=d(t+1)(t+1)2+2d(t+1)t+1+322t1(t2t+1)2dt32dt(t2t+1)2d(t2t+1)t2t+1=1t+1+2ln(t+1)32(t2t+1)ln(t2t+1)32(t2t+1)2I2=dt(t2t+1)2=d(t12)[(t12)2+(32)2]2.Setu=t12,a=32I2=du(u2+a)2=12a2(21).u(u2+a2)21+1a2.2.232.22.I1=23.u(u2+a2)+43.12duu2+a2=23.t12(t2t+1)+23.23tan1(2t13)=2t13(t2t+1)+433tan1(2t13)Hence,9B=1t+1+2ln(t+1)32(t2t+1)ln(t2t+1)32(t2t+1)2=1t+132(t2t+1)+2lnt+1t2t+13I2=1t+132(t2t+1)+2lnt+1t2t+12t1t2t+143tan1(2t13)F=8A8B=8[13lnt16ln(t2t+1)+12×23tan1(2x13)]89[=1t+132(t2t+1)+2lnt+1t2t+12t1t2t+143tan1(2t13)]

Leave a Reply

Your email address will not be published. Required fields are marked *