bemath-0-2pi-ln-1-sin-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 107314 by bemath last updated on 10/Aug/20 ⩞bemath⩞∫2π0ln(1+sinx)dx? Answered by mnjuly1970 last updated on 10/Aug/20 Ω=∫02πln(1+sin(x))dx=∫−ππln(1−sin(x))dx2Ω=2∫0πln(cos(x))dx⇒Ω=−πln(2)… Commented by bemath last updated on 10/Aug/20 thankyou Answered by mathmax by abdo last updated on 10/Aug/20 ∫02πln(1+sinx)dx=∫0πln(1+sinx)dx+∫π2πln(1+sinx)dx(→x=π+t)=∫0πln(1+sinx)dx+∫0πln(1−sint)dt=∫0πln{(1+sinx)(1−sinx)}dd=∫0πln(1−sin2x)dx=∫0πln(cos2x)dx=2∫0πln∣cosx∣dx=2∫0π2ln(cosx)dx+2∫π2πln(−cosx)dxbut∫0π2ln(cosx)dx=−π2ln(2)and∫π2πln(−cosx)dx=∫π2πln(cos(π−x))dx=π−x=t∫π20ln(cost)(−dt)=∫0π2ln(cost)dt=−π2ln(2)⇒I=−πln(2)−πln(2)⇒I=−2πln(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107315Next Next post: Question-41783 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.