Menu Close

bemath-0-2pi-ln-1-sin-x-dx-




Question Number 107314 by bemath last updated on 10/Aug/20
        ⌆bemath⌆       ∫_0 ^(2π)  ln (1+sin x) dx ?
bemath2π0ln(1+sinx)dx?
Answered by mnjuly1970 last updated on 10/Aug/20
Ω=∫_0 ^( 2π) ln(1+sin(x))dx=∫_(−π) ^( π) ln(1−sin(x))dx        2Ω=2∫_0 ^( π)  ln(cos(x))dx⇒Ω=−πln(2)  ...
Ω=02πln(1+sin(x))dx=ππln(1sin(x))dx2Ω=20πln(cos(x))dxΩ=πln(2)
Commented by bemath last updated on 10/Aug/20
thank you
thankyou
Answered by mathmax by abdo last updated on 10/Aug/20
∫_0 ^(2π) ln(1+sinx)dx =∫_0 ^π ln(1+sinx)dx +∫_π ^(2π) ln(1+sinx)dx(→x =π+t)  =∫_0 ^π  ln(1+sinx)dx +∫_0 ^π ln(1−sint)dt =∫_0 ^π ln{(1+sinx)(1−sinx)}dd  =∫_0 ^π ln(1−sin^2 x)dx =∫_0 ^π ln(cos^2 x)dx =2 ∫_0 ^π ln∣cosx∣ dx  =2 ∫_0 ^(π/2) ln(cosx)dx+2∫_(π/2) ^π ln(−cosx)dx but   ∫_0 ^(π/2) ln(cosx)dx =−(π/2)ln(2) and  ∫_(π/2) ^π ln(−cosx)dx =∫_(π/2) ^π ln(cos(π−x))dx =_(π−x=t)    ∫_(π/2) ^0  ln(cost)(−dt)  =∫_0 ^(π/2)  ln(cost)dt =−(π/2)ln(2) ⇒I =−πln(2)−πln(2) ⇒  I =−2πln(2)
02πln(1+sinx)dx=0πln(1+sinx)dx+π2πln(1+sinx)dx(x=π+t)=0πln(1+sinx)dx+0πln(1sint)dt=0πln{(1+sinx)(1sinx)}dd=0πln(1sin2x)dx=0πln(cos2x)dx=20πlncosxdx=20π2ln(cosx)dx+2π2πln(cosx)dxbut0π2ln(cosx)dx=π2ln(2)andπ2πln(cosx)dx=π2πln(cos(πx))dx=πx=tπ20ln(cost)(dt)=0π2ln(cost)dt=π2ln(2)I=πln(2)πln(2)I=2πln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *