Menu Close

bemath-0-pi-2-sin-x-dx-sin-x-cos-x-




Question Number 106583 by bemath last updated on 06/Aug/20
           @bemath@  ∫_0 ^(π/2)  ((sin x dx)/(sin x+cos x)) =?
@bemath@π/20sinxdxsinx+cosx=?
Answered by bobhans last updated on 06/Aug/20
let a = ∫_0 ^(π/2)  ((sin x dx)/(sin x+cos x))  ; ♭ = ∫_0 ^(π/2)  ((cos x dx)/(sin x+cos x))  (1) a+♭ = ∫_0 ^(π/2)  dx = (π/2)   (2) a−♭ = ∫_0 ^(π/2)  ((sin x−cos x)/(sin x+cos x)) dx = −∫_1 ^1  (du/u) = 0   [ with u = sin x+cos x ]; a = ♭  therefore a = ∫_0 ^(π/2)  ((sin x dx)/(sin x+cos x)) = (1/2)×(π/2)=(π/4)
leta=π20sinxdxsinx+cosx;=π20cosxdxsinx+cosx(1)a+=π20dx=π2(2)a=π20sinxcosxsinx+cosxdx=11duu=0[withu=sinx+cosx];a=thereforea=π20sinxdxsinx+cosx=12×π2=π4
Commented by john santu last updated on 06/Aug/20
nice & cooll..
nice&cooll..
Commented by bemath last updated on 06/Aug/20
creative...⋰
creative\iddots

Leave a Reply

Your email address will not be published. Required fields are marked *