Menu Close

BeMath-1-0-x-1-x-3-dx-2-lim-x-0-sin-pi-cos-2-x-x-2-3-If-g-x-1-x-and-g-f-x-3-2-x-x-find-f-x-




Question Number 107706 by bemath last updated on 12/Aug/20
            ✓BeMath✓   (1)           ∫_0 ^∞  ((√x)/(1+x^3 )) dx ?    (2)         lim_(x→0)  ((sin (π cos^2 x))/x^2 )   (3) If g(x)= 1+(√x) and (g○f)(x)=3+2(√x) +x     find f(x)
BeMath(1)0x1+x3dx?(2)limx0sin(πcos2x)x2(3)Ifg(x)=1+xand(gf)(x)=3+2x+xfindf(x)
Answered by bemath last updated on 12/Aug/20
(3) (g○f)(x)= 1+(√(f(x))) =x+2(√x) +3  (√(f(x))) = x+2(√x) +2   (√(f(x))) = ((√x))^2  + 2(√x) +2   (√(f(x))) = ((√x) +1)^2  +1   f(x) = { ((√x)+1)^2 +1}^2
(3)(gf)(x)=1+f(x)=x+2x+3f(x)=x+2x+2f(x)=(x)2+2x+2f(x)=(x+1)2+1f(x)={(x+1)2+1}2
Answered by Dwaipayan Shikari last updated on 12/Aug/20
lim_(x→0) ((sin(πcos^2 x))/x^2 )=((sin(π−πsin^2 x))/x^2 )=((sinπcos(πsin^2 x)−cosπsin(πsin^2 x))/x^2 )                         =((sin(πsin^2 x))/x^2 )=((sin(πx^2 ))/x^2 )=((πx^2 )/x^2 )=π     (sin(πsin^2 x)→sin(πx^2 ))                                                                                 (sin(πx^2 )→πx^2 )
limx0sin(πcos2x)x2=sin(ππsin2x)x2=sinπcos(πsin2x)cosπsin(πsin2x)x2=sin(πsin2x)x2=sin(πx2)x2=πx2x2=π(sin(πsin2x)sin(πx2))(sin(πx2)πx2)
Answered by Dwaipayan Shikari last updated on 12/Aug/20
lim_(x→0) ((sin(πcos^2 x))/x^2 )=π((cos(πcos^2 x))/(2x))−2cosx sinx=π((cos(πcos^2 x))/(2x))−2x  Another way                                                                                                     =π(−1)(−1)=π
limx0sin(πcos2x)x2=πcos(πcos2x)2x2cosxsinx=πcos(πcos2x)2x2xAnotherway=π(1)(1)=π
Answered by john santu last updated on 12/Aug/20
       ((♣JS♣)/…)  (1) ∫ _0 ^∞ ((√x)/(1+x^3 )) dx  [ let h=(√(x )) ]  ∫_0 ^∞  (h/(1+h^6 )) .(2h)dh = ∫_0 ^∞  ((2h^2 )/(1+h^6 )) dh  now set q=h^3 ;   ∫_0 ^∞  (2/(1+q^3 )) .(1/3)dq = [(2/3) arc tan q ]_0 ^∞   = (2/3)×(π/2)= = (π/3)
JS(1)0x1+x3dx[leth=x]0h1+h6.(2h)dh=02h21+h6dhnowsetq=h3;021+q3.13dq=[23arctanq]0=23×π2==π3

Leave a Reply

Your email address will not be published. Required fields are marked *