Menu Close

BeMath-1-1-1-2-1-3-1-4-1-5-1-6-2-lim-x-0-1-sin-x-1-x-




Question Number 107352 by bemath last updated on 10/Aug/20
        ⊚BeMath⊚  (1)1−(1/( (√2))) +(1/( (√3)))−(1/( (√4)))+(1/( (√5)))−(1/( (√6)))+...=?  (2) lim_(x→0) (1+sin x)^(1/x)  ?
BeMath(1)112+1314+1516+=?(2)limx0(1+sinx)1x?
Answered by Dwaipayan Shikari last updated on 10/Aug/20
2)lim_(x→0) (1+sinx)^(1/x) =y  (1/x)log(1+sinx)=logy  ((sinx)/x) ((log(1+sinx))/(sinx))=logy  (x/x).1=logy  y=e
2)limx0(1+sinx)1x=y1xlog(1+sinx)=logysinxxlog(1+sinx)sinx=logyxx.1=logyy=e
Answered by john santu last updated on 10/Aug/20
        ⋇JS⋇  (2) lim_(x→0) (1+sin x)^(1/x) = e^(lim_(x→0) (1+sin x−1).(1/x))   = e^(lim_(x→0) (((sin x)/x))) = e^1  = e
JS(2)limx0(1+sinx)1x=elimx0(1+sinx1).1x=elimx0(sinxx)=e1=e
Answered by Dwaipayan Shikari last updated on 10/Aug/20
Σ_(n=1) ^∞ (((−1)^(n+1) )/( (√n)))=0.609...
n=1(1)n+1n=0.609
Commented by Dwaipayan Shikari last updated on 10/Aug/20
Answered by mathmax by abdo last updated on 10/Aug/20
let f(x) =(1+sinx)^(1/x)  ⇒f(x) =e^((1/x)ln(1+sinx))   we have sinx ∼ ⇒1+sinx ∼1+x ⇒ln(1+sinx) ∼ln(1+x)∼x(x→0)  ⇒(1/x)ln(1+sinx) ∼ 1 ⇒lim_(x→0) f(x) =e
letf(x)=(1+sinx)1xf(x)=e1xln(1+sinx)wehavesinx1+sinx1+xln(1+sinx)ln(1+x)x(x0)1xln(1+sinx)1limx0f(x)=e
Answered by bemath last updated on 10/Aug/20
     ⊚BeMath⊚  (2) lim_(x→0) (1+sin x)^(1/x) = e^(lim_(x→0)  ((ln (1+sin x))/x))   = e^(lim_(x→0)  (((sin x−((sin^2 x)/2)+...)/x))) = e^1  = e
BeMath(2)limx0(1+sinx)1x=elimx0ln(1+sinx)x=elimx0(sinxsin2x2+x)=e1=e

Leave a Reply

Your email address will not be published. Required fields are marked *