Menu Close

BeMath-1-find-the-equation-of-the-tangent-line-to-the-graph-of-the-equation-sin-1-x-cos-1-y-pi-2-at-given-point-2-2-2-2-2-If-f-x-lim-t-x-sec-t-sec-x-t-x-




Question Number 108766 by bemath last updated on 19/Aug/20
   ((BeMath)/★)  (1) find the equation of the tangent line to  the graph of the equation sin^(−1) (x)+cos^(−1) (y)=(π/2)  at given point (((√2)/2), ((√2)/2))  (2)If f(x)= lim_(t→x)  ((sec t−sec x)/(t−x)) , find the value of   f ′((π/4))  (3) lim_(x→1)  ((tan^(−1) (x)−(π/4))/(x−1))
BeMath(1)findtheequationofthetangentlinetothegraphoftheequationsin1(x)+cos1(y)=π2atgivenpoint(22,22)(2)Iff(x)=limtxsectsecxtx,findthevalueoff(π4)(3)limx1tan1(x)π4x1
Answered by Dwaipayan Shikari last updated on 19/Aug/20
3)lim_(x→1) ((tan^(−1) ((x−1)/(1+x)))/(x−1))=((x−1)/(x−1)).(1/(1+x))=(1/2)
3)limx1tan1x11+xx1=x1x1.11+x=12
Answered by john santu last updated on 19/Aug/20
    ((⊸JS⊸)/♥)  (1) (d/dx) [ sin^(−1) (x)+cos^(−1) (y) ] = 0  ⇒(1/( (√(1−x^2 )))) −(1/( (√(1−y^2 )))) y′(x) = 0  gradient ⇒y′(((√2)/2)) = ((√(1−(1/2)))/( (√(1−(1/2))))) = 1  ∴ the equation of tangent line    y = 1.(x−((√2)/2))+((√2)/2) ; y = x   (2)f(x) = lim_(t→x)  ((sec t−sec x)/(t−x))  ⇒f(x) = lim_(t→x)  ((cos x−cos t)/(cos t.cos x (t−x)))  ⇒f(x) = lim_(t→x)  (1/(cos t.cos x)) . lim_(t→x)  ((−2sin (((x+t)/2))sin (((x−t)/2)))/(t−x))  ⇒f(x) = ((sin x)/(cos^2 x)) →f ′(x) = ((cos^3 x+2sin^2 x cos x)/(cos^4 x))  ⇒f ′(x) = ((cos^2 x+2sin^2 x)/(cos^3 x))  therefore f ′((π/4)) = (((1/2)+2.(1/2))/(1/(2(√2)))) = (3/2). 2(√2) = 3(√2)   (3) lim_(x→1)  ((tan^(−1) (x)−(π/4))/(x−1)) = lim_(x→1)  [ (1/(1+x^2 )) ] =(1/2)
JS(1)ddx[sin1(x)+cos1(y)]=011x211y2y(x)=0gradienty(22)=112112=1theequationoftangentliney=1.(x22)+22;y=x(2)f(x)=limtxsectsecxtxf(x)=limtxcosxcostcost.cosx(tx)f(x)=limtx1cost.cosx.limtx2sin(x+t2)sin(xt2)txf(x)=sinxcos2xf(x)=cos3x+2sin2xcosxcos4xf(x)=cos2x+2sin2xcos3xthereforef(π4)=12+2.12122=32.22=32(3)limx1tan1(x)π4x1=limx1[11+x2]=12
Commented by bemath last updated on 19/Aug/20
nice...
nice
Answered by mathmax by abdo last updated on 19/Aug/20
1)arcsinx +arcosy =(π/2) ⇒arcosy =(π/2) −arcsnx ⇒  y(x) =cos((π/2)−arcsinx) =sin(arcsinx) =x ⇒y^′ (x)=1 ⇒  y =y^′ (((√2)/2))(x−((√2)/2)) +y(((√2)/2)) =x−((√2)/2) +((√2)/2) =x ⇒y=x is the  equation of tangente
1)arcsinx+arcosy=π2arcosy=π2arcsnxy(x)=cos(π2arcsinx)=sin(arcsinx)=xy(x)=1y=y(22)(x22)+y(22)=x22+22=xy=xistheequationoftangente
Answered by mathmax by abdo last updated on 19/Aug/20
2) f(x) =lim_(t→x) (((1/(sint))−(1/(sinx)))/(t−x)) ⇒f(x) =(d/dx)((1/(sinx))) =−((cosx)/(sin^2 x)) ⇒  f^′ (x) =−((−sinxsin^2 x−2sinx cosx cosx)/(sin^4 x))  =((sin^2 x+2cos^2 x)/(sin^3 x)) =((1+cos^2 x)/(sin^3 x)) ⇒f^′ ((π/4)) =((1+((1/( (√2))))^2 )/(((1/( (√2))))^3 )) =(3/(2((1/(2(√2)))))) =3(√2)
2)f(x)=limtx1sint1sinxtxf(x)=ddx(1sinx)=cosxsin2xf(x)=sinxsin2x2sinxcosxcosxsin4x=sin2x+2cos2xsin3x=1+cos2xsin3xf(π4)=1+(12)2(12)3=32(122)=32
Answered by mathmax by abdo last updated on 19/Aug/20
3) lim_(x→1)  ((arctanx −(π/4))/(x−1)) =lim_(x→1) ((arctan(x)−arctan(1))/(x−1))  =arctan^′ (1) =(1/2)
3)limx1arctanxπ4x1=limx1arctan(x)arctan(1)x1=arctan(1)=12

Leave a Reply

Your email address will not be published. Required fields are marked *