Menu Close

bemath-1-If-a-b-20-a-b-R-find-maximum-value-of-a-5b-2-lim-x-4-x-3-x-2-x-2-16-3-tan-ln-x-tan-ln-x-2-x-dx-4-3x-7-2-2-x-3-




Question Number 110944 by bemath last updated on 01/Sep/20
   ■(√(bemath))★  (1)If (√a) −(√b) = 20 , a,b∈R , find maximum  value of a−5b ?  (2)lim_(x→4) (((√x)−(√(3(√x)−2)))/(x^2 −16)) ?  (3)∫ ((tan (ln x) tan (ln ((x/2))))/x) dx  (4)((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3))
◼bemath(1)Ifab=20,a,bR,findmaximumvalueofa5b?(2)limx4x3x2x216?(3)tan(lnx)tan(ln(x2))xdx(4)(3x7)22x33(x)2x3
Commented by bemath last updated on 01/Sep/20
Commented by 1549442205PVT last updated on 02/Sep/20
If x=0 then (√(3x−7))=(√(−7))?
Ifx=0then3x7=7?
Commented by bemath last updated on 02/Sep/20
(√((3x−7)^2 )) sir
(3x7)2sir
Answered by john santu last updated on 01/Sep/20
Commented by bemath last updated on 01/Sep/20
typo a−5b = 625−5×25=625−125=500
typoa5b=6255×25=625125=500
Answered by Dwaipayan Shikari last updated on 01/Sep/20
2)lim_(x→4) ((x−3(√x)+2)/(x−4)).(1/( (√x)+(√(3(√x)−2)))).(1/(x+4))  lim_(x→4) ((w^2 −3w+2)/(w^2 −4)).(1/(32))=(((w−1)(w−2))/((w−2)(w+2))).(1/(32))=(((√x)−1)/( (√x)+2)).(1/(32))=(1/(128))
2)limx4x3x+2x4.1x+3x2.1x+4limx4w23w+2w24.132=(w1)(w2)(w2)(w+2).132=x1x+2.132=1128
Answered by 1549442205PVT last updated on 02/Sep/20
(√a)−(√b)=20⇒(√b)=(√a)−20.Hence,  P=a−5b=a−5((√a)−20)^2   =a−5a+200(√a)−2000  =−4(a−50(√a)+625)+500  =−4((√a)−25)^2 +500≤500  The equality ocurrs if and only if   { (((√a)−25=0)),(((√a)−(√b)=20)) :}⇔ { ((a=625)),((b=25)) :}  Thus,P=a−5b has greatest value  equal to 500 when (a,b)=(625,25)
ab=20b=a20.Hence,P=a5b=a5(a20)2=a5a+200a2000=4(a50a+625)+500=4(a25)2+500500Theequalityocurrsifandonlyif{a25=0ab=20{a=625b=25Thus,P=a5bhasgreatestvalueequalto500when(a,b)=(625,25)
Answered by 1549442205PVT last updated on 02/Sep/20
2)Set x−4=t(x→4)∼(t→0),x=t+4  (2)lim(((√x)−(√(3(√x)−2)))/(x^2 −16)) =lim_(t→0) (((√(t+4))−(√(3(√(t+4))−2)))/((t+4)^2 −16))  =lim_(t→0) ((t+4−(3(√(t+4))−2))/( [(√(t+4))+(√(3(√(t+4))−2]))(t^2 +8t)))  =lim_(t→0) ((t+6−3(√(t+4)))/( [(√(t+4))+(√(3(√(t+4))−2]))(t^2 +8t)))  =lim_(t→0) (((t+6)^2 −(3(√(t+4)))^2 )/( [(√(t+4))+(√(3(√(t+4))−2]))(t^2 +8t)(t+6+3(√(t+4)))))  =lim_(t→0) ((t^2 +12t+36−9t−36)/( [(√(t+4))+(√(3(√(t+4))−2]))(t^2 +8t)(t+6+3(√(t+4)))))  =lim_(t→0) ((t+3)/( [(√(t+4))+(√(3(√(t+4))−2]))(t+6+3(√(t+4)))(t+8)))  =(3/((2+2)(6+6).8))=(1/(128))
2)Setx4=t(x4)(t0),x=t+4(2)limx3x2x216=limt0t+43t+42(t+4)216=limt0t+4(3t+42)[t+4+3t+42](t2+8t)=limt0t+63t+4[t+4+3t+42](t2+8t)=limt0(t+6)2(3t+4)2[t+4+3t+42](t2+8t)(t+6+3t+4)=limt0t2+12t+369t36[t+4+3t+42](t2+8t)(t+6+3t+4)=limt0t+3[t+4+3t+42](t+6+3t+4)(t+8)=3(2+2)(6+6).8=1128
Answered by 1549442205PVT last updated on 02/Sep/20
(4)((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3))  ⇔((3x−7−2)/(x−3))≤((3−x)/(x−3)) (1).Under the  condition { ((x≥(7/3))),((x≠3)) :}  (1)⇔((3x−9)/(x−3))≤−1⇔((x−3)/(x−3))≤−1⇔1≤−1  the inequality has no roots
(4)(3x7)22x33(x)2x33x72x33xx3(1).Underthecondition{x73x3(1)3x9x31x3x3111theinequalityhasnoroots
Commented by bemath last updated on 02/Sep/20
wrong sir. if (√((3x−7)^2 )) = ∣3x−7∣  not (√((3x−7)^2 )) = 3x−7
wrongsir.if(3x7)2=3x7not(3x7)2=3x7

Leave a Reply

Your email address will not be published. Required fields are marked *