Menu Close

BeMath-1-lim-b-a-b-a-a-b-a-a-b-a-2a-a-2-lim-x-0-3e-2x-e-x-4-x-




Question Number 108623 by bemath last updated on 18/Aug/20
  ((⊃BeMath⊃)/★)   (1)lim_(b→a)  ((b(√a)−a(√b))/(a(√a)+b(√a)−2a(√a)))  (2) lim_(x→0)  ((3e^(2x) +e^x −4)/x)
BeMath(1)limbabaabaa+ba2aa(2)limx03e2x+ex4x
Answered by ajfour last updated on 18/Aug/20
 lim ((b(√a)−a(√b))/(a(√a)+b(√a)−2a(√a)))  L=lim_(b→a) (((ab^2 −a^2 b)/(a^3 +ab^2 +2a^2 b−4a^3 )))×lim_(b→a) (((a(√a)+b(√a)+2(√a))/(b(√a)+a(√b))))    = lim_(b→a)  ((b(b−a))/(b^2 +2ab−3a^2 ))×2    = lim_(b→a) ((b(b−a))/((b+3a)(b−a)))×2  ⇒  L = (1/2)
limbaabaa+ba2aaL=limba(ab2a2ba3+ab2+2a2b4a3)×limba(aa+ba+2aba+ab)=limbab(ba)b2+2ab3a2×2=limbab(ba)(b+3a)(ba)×2L=12
Commented by bemath last updated on 18/Aug/20
cooll
cooll
Answered by ajfour last updated on 18/Aug/20
L= lim_(x→0)  ((3e^(2x) +e^x −4)/x)  L=lim_(x→0) ((3(e^(2x) −1)+(e^x −1))/x)     L = 3×2+1 = 7 .
L=limx03e2x+ex4xL=limx03(e2x1)+(ex1)xL=3×2+1=7.
Answered by mathmax by abdo last updated on 18/Aug/20
2) f(x)=((3e^(2x) +e^x −4)/x)  we hsve e^(2x)  ∼1+2x  and e^x  ∼1+x ⇒  f(x)∼((3+6x+1+x−4)/x) =7(x→0) ⇒lim_(x→0) f(x)=7
2)f(x)=3e2x+ex4xwehsvee2x1+2xandex1+xf(x)3+6x+1+x4x=7(x0)limx0f(x)=7

Leave a Reply

Your email address will not be published. Required fields are marked *