Menu Close

bemath-1-lim-n-n-1-5-n-2-5-n-3-5-2n-5-n-6-2-x-2-a-2-x-4-dx-




Question Number 111313 by bemath last updated on 03/Sep/20
     (√(bemath))   (1)lim_(n→∞)  (((n+1)^5 +(n+2)^5 +(n+3)^5 +...+(2n)^5 )/n^6 )?  (2) ∫ ((√(x^2 −a^2 ))/x^4 ) dx
bemath(1)limn(n+1)5+(n+2)5+(n+3)5++(2n)5n6?(2)x2a2x4dx
Answered by ajfour last updated on 03/Sep/20
(2)    x=asec θ   ⇒  cos θ=(a/x)     ∫ ((atan θ(asec θtan θ)dθ)/(a^4 sec^4 θ))    = (1/a^2 )∫sin^2 θcos θdθ  = (1/a^2 )(((sin^3 θ)/3))+c     = (1/(3a^2 ))(1−(a^2 /x^2 ))^(3/2) +c
(2)x=asecθcosθ=axatanθ(asecθtanθ)dθa4sec4θ=1a2sin2θcosθdθ=1a2(sin3θ3)+c=13a2(1a2x2)3/2+c
Commented by bemath last updated on 03/Sep/20
thank you
thankyou
Answered by bobhans last updated on 03/Sep/20
(■) I=∫ ((√(x^2 −a^2 ))/x^4 ) dx     [ let x = a sec t ⇒ dx = asec t tan t dt ]   I = ∫((√(a^2 (sec^2 t−1)))/(a^4  sec^4 t)). a sec t tan t dt  I= (1/a^2 ) ∫ ((tan^2  t )/(sec^3 t)) dt = (1/a^2 )∫ sin^2 t cos t dt   I = (1/a^2 ) ∫ sin^2 t d(sin t) = (1/(3a^2 )) sin^3 t + c  I = (1/(3a^2 )) (((√(x^2 −a^2 ))/x))^3 + c = (1/(3a^2 x^3 ))(√((x^2 −a^2 )^3 )) + c
(◼)I=x2a2x4dx[letx=asectdx=asecttantdt]I=a2(sec2t1)a4sec4t.asecttantdtI=1a2tan2tsec3tdt=1a2sin2tcostdtI=1a2sin2td(sint)=13a2sin3t+cI=13a2(x2a2x)3+c=13a2x3(x2a2)3+c
Answered by bobhans last updated on 03/Sep/20
(★) L = lim_(n→∞) [(1/n^6 ) Σ_(k=1) ^n (n+k)^5  ]     L = lim_(n→∞)  [ Σ_(k=1) ^n (1+(k/n))^5 .(1/n) ]     recall ∫_a ^b  f(x) dx = lim_(n→∞)  Σ_(k=1) ^n  f(x+k.△x).△x  where △x = ((b−a)/n), we have △x = (1/n)  by letting → { ((a=1)),((b=2)) :}  therefore L = ∫_1 ^2  x^5  dx = [(1/6)x^6  ]_1 ^2 =((63)/6)=((21)/2)
()L=limn[1n6nk=1(n+k)5]L=limn[nk=1(1+kn)5.1n]recallbaf(x)dx=limnnk=1f(x+k.x).xwherex=ban,wehavex=1nbyletting{a=1b=2thereforeL=21x5dx=[16x6]12=636=212
Commented by bemath last updated on 03/Sep/20
yes...thank you
yesthankyou
Answered by Dwaipayan Shikari last updated on 03/Sep/20
lim_(n→∞) (1/n)((1+(1/n))^5 +(1+(2/n))^5 +....n)  lim_(n→∞) (1/n)Σ_(r=1) ^n (1+(r/n))^5   =∫_0 ^1 (1+x)^5 dx=(1/6)(64−1)=((21)/2)
limn1n((1+1n)5+(1+2n)5+.n)limn1nnr=1(1+rn)5=01(1+x)5dx=16(641)=212

Leave a Reply

Your email address will not be published. Required fields are marked *