Menu Close

bemath-1-lim-x-2x-2-x-3-1-3-x-2-lim-x-1-1-x-1-sin-pix-3-0-x-2-f-t-dt-x-cos-pix-Find-f-4-




Question Number 111498 by bemath last updated on 04/Sep/20
      (√(bemath ))  (1)lim_(x→∞)  ((2x^2 −x^3 ))^(1/(3 ))  + x ?  (2) lim_(x→1)  ((1/x))^(1/(sin πx))  ?  (3) ∫_0 ^x^2   f(t) dt = x cos (πx) . Find f (4).
bemath(1)limx2x2x33+x?(2)limx1(1x)1sinπx?(3)x20f(t)dt=xcos(πx).Findf(4).
Answered by john santu last updated on 04/Sep/20
  let x = (1/t)→ { ((x→∞)),((t→0)) :}  L=lim_(t→0)  (((2/t^2 )−(1/t^3 )))^(1/(3 ))  + (1/t)  L= lim_(t→0)  (((2t−1)/t^3 ))^(1/(3 ))  + (1/t)  L = lim_(t→0)  ((((2t−1))^(1/(3 )) +1)/t)  L= lim_(t→0)  ((2t)/(t[ (2t−1)^2 −(2t−1)+1 ]))  L= lim_(t→0)  (2/((2t−1)^2 +2−2t)) = (2/3).
letx=1t{xt0L=limt02t21t33+1tL=limt02t1t33+1tL=limt02t13+1tL=limt02tt[(2t1)2(2t1)+1]L=limt02(2t1)2+22t=23.
Answered by bemath last updated on 04/Sep/20
Commented by bemath last updated on 04/Sep/20
typo in (x)^(1/(3 ))  it should be (x^3 )^(1/(3 ))
typoinx3itshouldbex33
Answered by john santu last updated on 04/Sep/20
(2)ln L = lim_(x→1) (((−ln x)/(sin πx)))       ln L = lim_(x→1) (((−(1/x))/(π cos πx)))       ln L = (1/π) ⇒ L = e^(1/π) = (e)^(1/(π ))
(2)lnL=limx1(lnxsinπx)lnL=limx1(1xπcosπx)lnL=1πL=e1π=eπ
Answered by john santu last updated on 04/Sep/20
(3) (d/dx) [∫_0 ^(  x^2 ) f(t) dt ] = (d/dx) [x cos πx ]  ⇒ 2x f(x^2 ) = cos πx −πx sin πx  put x = 2   ⇒ 4f(4) = cos 2π−2π sin 2π  ⇒ f(4) = (1/4)
(3)ddx[0x2f(t)dt]=ddx[xcosπx]2xf(x2)=cosπxπxsinπxputx=24f(4)=cos2π2πsin2πf(4)=14
Answered by mathmax by abdo last updated on 04/Sep/20
let f(x)=^3 (√(−x^3 +2x^2 )) +x ⇒f(x)=x−^3 (√(x^3 (1−(2/x))))  =x−x(1−(2/x))^(1/3)  ∼x−x(1−(2/(3x)))  ⇒f(x)∼(2/3) ⇒lim_(x→∞) f(x)=(2/3)
letf(x)=3x3+2x2+xf(x)=x3x3(12x)=xx(12x)13xx(123x)f(x)23limxf(x)=23
Answered by mathmax by abdo last updated on 04/Sep/20
2) let f(x) =((1/x))^(1/(sin(πx)))  ⇒f(x) =e^((−lnx)/(sin(πx)))    we have  lim_(x→1) ((lnx)/(sin(πx))) =_(hospital)    lim_(x→1)     (1/(x(πcos(πx))) =−(1/π) ⇒  lim_(x→1) f(x) =e^(1/π)  =^π (√e)
2)letf(x)=(1x)1sin(πx)f(x)=elnxsin(πx)wehavelimx1lnxsin(πx)=hospitallimx11x(πcos(πx)=1πlimx1f(x)=e1π=πe
Commented by bobhans last updated on 04/Sep/20
typo e^(−(1/π))  = (1/e^(1/π) )
typoe1π=1e1π
Commented by mathmax by abdo last updated on 04/Sep/20
no typo!
notypo!
Commented by bobhans last updated on 04/Sep/20
why ?  you got e^(−(1/π))  ? it not same to   (e)^(1/(π ))  ???
why?yougote1π?itnotsametoeπ???
Answered by mathmax by abdo last updated on 04/Sep/20
3) we have ∫_0 ^x^2  f(t)dt =xcos(πx)  let derivate ⇒  2xf(x^2 ) =cos(πx)−πxsin(πx)  x=2 we get 4f(4) =cos(2π)−2π sin(2π) =1 ⇒f(4) =(1/4)
3)wehave0x2f(t)dt=xcos(πx)letderivate2xf(x2)=cos(πx)πxsin(πx)x=2weget4f(4)=cos(2π)2πsin(2π)=1f(4)=14
Answered by Dwaipayan Shikari last updated on 04/Sep/20
lim_(x→1) ((1/x))^(1/(sinπx)) =y  (1/(sinπx))log((1/x))=logy  (((1/x)−1)/(sinπx)) ((log(1+(1/x)−1))/(((1/x)−1)))=logy  lim_(w→0) (((1/(w+1))−1)/(sin(πw+π)))=logy  lim_(w→0) (((−w)/(w+1))/(−sinπw))=logy  lim_(x→0)   (((−w)/(w+1))/(−wπ))=logy  (1/π)=logy  y=e^(1/π)
limx1(1x)1sinπx=y1sinπxlog(1x)=logy1x1sinπxlog(1+1x1)(1x1)=logylimw01w+11sin(πw+π)=logylimw0ww+1sinπw=logylimx0ww+1wπ=logy1π=logyy=e1π

Leave a Reply

Your email address will not be published. Required fields are marked *