Menu Close

bemath-1-lim-x-x-2-x-1-x-2-x-3-2-prove-that-n-2-2-n-for-n-N-by-mathematical-induction-




Question Number 111882 by bemath last updated on 05/Sep/20
  (√(bemath))  (1)lim_(x→∞) [(x^2 /(x+1)) − (x^2 /(x+3)) ] ?  (2) prove that n^2  ≤ 2^n  for ∀n∈N  by mathematical induction
$$\:\:\sqrt{{bemath}} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{x}^{\mathrm{2}} }{{x}+\mathrm{1}}\:−\:\frac{{x}^{\mathrm{2}} }{{x}+\mathrm{3}}\:\right]\:? \\ $$$$\left(\mathrm{2}\right)\:{prove}\:{that}\:{n}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{{n}} \:{for}\:\forall{n}\in\mathbb{N} \\ $$$${by}\:{mathematical}\:{induction} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Sep/20
lim_(x→∞) (((x^3 +3x^2 −x^3 −x^2 )/((x+1)(x+3))))=((2x^2 )/(x^2 (1+(1/x))(1+(3/x))))=2
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −{x}^{\mathrm{3}} −{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)}\right)=\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right)}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *