Menu Close

bemath-1-x-2-9-4x-2-dx-




Question Number 106705 by bemath last updated on 06/Aug/20
       @bemath@       ∫ ((1+x^2 )/( (√(9−4x^2 )))) dx
@bemath@1+x294x2dx
Answered by mathmax by abdo last updated on 06/Aug/20
I =∫ ((1+x^2 )/( (√(9−4x^2 ))))dx ⇒I =∫ ((1+x^2 )/(3(√(1−(4/9)x^2 )))) we do the changement   (2/3)x =sint ⇒ I =∫  ((1+(9/4)sin^2 t)/(3 cost))×(3/2) cost dt  =(1/2) ∫ ((4+9sin^2 t)/4) dt =(1/2)t +(9/8) ∫ sin^2 t dt  =(t/2) +(9/(16))∫(1−cos(2t))dt =(t/2) +((9t)/(16))−(9/(32))sin(2t) +C  =((17t)/(16)) −(9/(16))sint cost +C  =((17)/(16)) arcsin(((2x)/3))−(9/(16)).((2x)/3)(√(1−(4/9)x^2 )) +C  I=((17)/(16))arcsin(((2x)/3))−((3x)/8)(√(1−(4/9)x^2 )) +C
I=1+x294x2dxI=1+x23149x2wedothechangement23x=sintI=1+94sin2t3cost×32costdt=124+9sin2t4dt=12t+98sin2tdt=t2+916(1cos(2t))dt=t2+9t16932sin(2t)+C=17t16916sintcost+C=1716arcsin(2x3)916.2x3149x2+CI=1716arcsin(2x3)3x8149x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *