Menu Close

BeMath-1-x-5-x-x-8-1-dx-2-1-2-1-sin-1-x-x-3-dx-




Question Number 108208 by bemath last updated on 15/Aug/20
       ((BeMath)/⊟)  (1)∫ ((x^5 −x)/(x^8 +1)) dx   (2) ∫_(1/( (√2))) ^1  ((sin^(−1) (x))/x^3 ) dx
BeMath(1)x5xx8+1dx(2)112sin1(x)x3dx
Answered by john santu last updated on 15/Aug/20
    ((★JS♠)/≎)  J=∫ ((x(x^4 −1))/(x^8 +1)) dx   let z = x^2  ⇒J=(1/2)∫((z^2 −1)/(z^4 +1)) dz   decomposition   z^4 +1 = (z^2 +1)^2 −2z^2               =(z^2 +z(√2)+1)(z^2 −z(√2) +1)  ((z^2 −1)/(z^4 +1)) =(1/2)(((z(√2)−1)/(z^2 −z(√2)+1))−((z(√2) +1)/(z^2 +z(√2)+1)))  J=(1/4)∫ (((z(√2)−1)/(z^2 −z(√2)+1))−((z(√2) +1)/(z^2 +z(√2)+1)))dz  J=(1/(4(√2))) ln (((x^4 −x^2 (√2) +1)/(x^4 +x^2 (√2)+1))) + c
JSJ=x(x41)x8+1dxletz=x2J=12z21z4+1dzdecompositionz4+1=(z2+1)22z2=(z2+z2+1)(z2z2+1)z21z4+1=12(z21z2z2+1z2+1z2+z2+1)J=14(z21z2z2+1z2+1z2+z2+1)dzJ=142ln(x4x22+1x4+x22+1)+c
Commented by bobhans last updated on 15/Aug/20
((Cooll)/(great))
Coollgreat
Answered by bobhans last updated on 15/Aug/20
(2)   ((bobhans)/(°•≡•°))    I = ∫_(1/(√2)) ^1  ((sin^(−1) (x))/x^3 ) dx   by part  { ((u=sin^(−1) (x)→du=(dx/( (√(1−x^2 )))))),((v = −(1/(2x^2 )))) :}  I=[−((sin^(−1) (x))/(2x^2 ))]_(1/( (√2))) ^1 +∫_(1/(√2)) ^1  (dx/(x^2 (√(1−x^2 ))))   I=0 +(1/2)∫_(π/4) ^(π/2)  ((cos h dh )/(sin^2 h (√(1−sin^2 h))))  I=(1/2)∫_(π/4) ^(π/2) csc^2  h dh = −(1/2) [cot h ]_(π/4) ^(π/2)   I=(1/2)
(2)bobhans°°I=11/2sin1(x)x3dxbypart{u=sin1(x)du=dx1x2v=12x2I=[sin1(x)2x2]121+11/2dxx21x2I=0+12π/2π/4coshdhsin2h1sin2hI=12π/2π/4csc2hdh=12[coth]π4π2I=12
Answered by mathmax by abdo last updated on 15/Aug/20
2) I =∫_(1/( (√2))) ^1  ((arcsinx)/x^3 )dx  by parts u^′  =x^(−3 )  and v =arcsinx  ⇒I =[−(1/2)x^(−2)  arcsinx]_(1/( (√2))) ^1 +(1/2)∫_(1/( (√2))) ^1  x^(−2) (dx/( (√(1−x^2 ))))  =(π/4)−(π/4) +(1/2)∫_(1/( (√2))) ^1  (dx/(x^2 (√(1−x^2 )))) =(1/2)∫_(1/( (√2))) ^1  (dx/(x^2 (√(1−x^2 ))))  =_(x=sint)    (1/2)∫_(π/4) ^(π/2)   ((cost dt)/(sin^2 t cost)) =(1/2)∫_(π/4) ^(π/2)  ((2dt)/(1−cos(2t)))  =_(2t=u)    ∫_(π/2) ^π    (du/(2{1−cosu})) =_(tan((u/2))=z)   (1/2)   ∫_1 ^(+∞)   ((2dz)/((1+z^2 )(1−((1−z^2 )/(1+z^2 )))))  =∫_1 ^(+∞)    (dz/(1+z^2 −1+z^2 )) =(1/2)∫_1 ^(+∞)  (dz/z^2 ) =(1/2)[−(1/z)]_1 ^(+∞)  =(1/2) ⇒  I =(1/2)
2)I=121arcsinxx3dxbypartsu=x3andv=arcsinxI=[12x2arcsinx]121+12121x2dx1x2=π4π4+12121dxx21x2=12121dxx21x2=x=sint12π4π2costdtsin2tcost=12π4π22dt1cos(2t)=2t=uπ2πdu2{1cosu}=tan(u2)=z121+2dz(1+z2)(11z21+z2)=1+dz1+z21+z2=121+dzz2=12[1z]1+=12I=12
Answered by mathmax by abdo last updated on 15/Aug/20
1) complex method  let decompose F(x) =((x^5 −x)/(x^8  +1))  x^8 +1=0 ⇒x^8  =e^(i(2k+1)π )  ⇒z_k =e^((i(2k+1)π)/8)   and k∈[[0,7]]  ⇒F(x) =((x^5 −x)/(Π_(k=0) ^7 (x−z_k ))) =Σ_(k=0) ^7  (a_k /(x−z_k ))  a_k =((z_k ^5 −z_k )/(8z_k ^7 )) =((z_k ^6 −z_k ^2 )/(−8)) ⇒∫ F(x)dx =−(1/8)∫ Σ_(k=0) ^7  ((z_k ^6 −z_k ^2 )/(x−z_k ))dx  =−(1/8)Σ_(k=0) ^7  (z_k ^6 −z_k ^2 )ln(x−z_k ) +C
1)complexmethodletdecomposeF(x)=x5xx8+1x8+1=0x8=ei(2k+1)πzk=ei(2k+1)π8andk[[0,7]]F(x)=x5xk=07(xzk)=k=07akxzkak=zk5zk8zk7=zk6zk28F(x)dx=18k=07zk6zk2xzkdx=18k=07(zk6zk2)ln(xzk)+C

Leave a Reply

Your email address will not be published. Required fields are marked *