Question Number 108099 by bemath last updated on 14/Aug/20

Commented by bemath last updated on 14/Aug/20

Answered by Dwaipayan Shikari last updated on 14/Aug/20

Answered by mathmax by abdo last updated on 14/Aug/20

Answered by 1549442205PVT last updated on 15/Aug/20
![i^→ =(1,0,0),j^(→) =(0,1,0),k^(→) =(0,0,1) ⇒i ^(→) −j ^(→) +k ^(→) =(1,−1,1),r ^(→) =(x,y,z) ⇒r ^(→) −i ^(→) −j ^(→) =(x−1,y−1,z) (r ^(→) −i ^(→) −j ^(→) )•(i ^(→) −j ^(→) +k ^(→) ) =(x−1,y−1,z)•(1,−1,1)=0⇔x−1−y+1+z=0 ⇔x−y+z=0 d[(3,3,1),Π]=((∣3−3+1∣)/( (√(1^2 +(−1)^2 +1^2 ))))=(1/( (√3))) ii)Let M(x,y,y−x)∈Πbe any point of the plane Π which has the equation: x−y+z=0 and A(3,3,1).Then d(A,M)=(√((x−3)^2 +(y−3)^2 +(y−x−1)^2 )) we need to find smallest of the expression P=(x−3)^2 +(y−3)^2 +(y−x−1)^2 =2x^2 +2y^2 −4x−8y−2xy+19 =2x^2 −(2y+4)x+2y^2 −8y+19 =2[(x−((y+2)/2))^2 +2y^2 −8y+19−(((y+2)^2 )/2) =2[(x−((y+2)/2))^2 +((3y^2 −20y+34)/2) =2[(x−((y+2)/2))^2 +((3(y−((10)/3))^2 +(2/3))/2) 2[(x−((y+2)/2))^2 +((3(y−2)^2 )/2)+(1/3)≥(1/3) ⇒d(A,M)≥(1/( (√3))) The equality ocurrs if and only if { ((y−((10)/3)=0)),((x−((y+2)/2)=0)) :} ⇔ { ((x=8/3)),((y=10/3)) :}⇒z=2/3 Thus the nearest distance between the point A(3,3,1)and Π be (1/( (√3))) and the point M lie on the plane Πwhich is nearest to A having coordinate be M((8/3),((10)/3),(2/3)) other way Let H(x,y,y−x)∈Π.Then A(3,3,1)is nearest to the plane Π if and only if AH^(→) ⊥Π ⇔AH^(→) //n_Π ^(→) =(1,−1,1),since AH^(→) =(x−3,y−3,y−x−1), so AH^(→) //n_Π ^(→) ⇔((x−3)/1)=((y−3)/(−1))=((y−x−1)/1) ⇔ { ((x+y=6)),((2x−y=2)) :}⇔ { ((x=8/3)),((y=10/3)),((z=2/3)) :}⇒H((8/3),((10)/3),(2/3)) The distance between A and the plane Π equal to d(A,H)=(√((3−(8/3))^2 +(3−((10)/3))^2 +(1−(2/3))^2 )) =(√(3((1/3))^2 ))=(1/( (√3)))](https://www.tinkutara.com/question/Q108119.png)