Menu Close

BeMath-2x-cos-1-x-dx-




Question Number 108095 by bemath last updated on 14/Aug/20
   ((∞BeMath∞)/♠)     ∫ 2x cos^(−1) (x) dx
BeMath2xcos1(x)dx
Answered by bemath last updated on 14/Aug/20
Answered by Dwaipayan Shikari last updated on 14/Aug/20
x^2 cos^(−1) x+∫(x^2 /( (√(1−x^2 ))))dx  x^2 cos^(−1) x−∫((1−x^2 )/( (√(1−x^2 ))))−(1/( (√(1−x^2 ))))  x^2 cos^(−1) x−∫(√(1−x^2 )) +sin^(−1) x  x^2 cos^(−1) x+sin^(−1) x−(x/2)(√(1−x^2 )) −(1/2)sin^(−1) x+C  x^2 cos^(−1) x+(1/2)sin^(−1) x−(x/2)(√(1−x^2 ))   +C
x2cos1x+x21x2dxx2cos1x1x21x211x2x2cos1x1x2+sin1xx2cos1x+sin1xx21x212sin1x+Cx2cos1x+12sin1xx21x2+C
Answered by mathmax by abdo last updated on 14/Aug/20
I =2∫ x arcosx dx  by parts  I =2{  (x^2 /2)arcosx +∫ (x^2 /2)(dx/( (√(1−x^2 ))))} =x^2 arcosx+∫ (x^2 /( (√(1−x^2 ))))dx} we have  ∫  (x^2 /( (√(1−x^2 ))))dx =_(x=sint)    ∫ ((sin^2 t)/(cost)) cost dt =∫ sin^2 t dt  =∫((1−cos(2t))/2)dt =(t/2) −(1/4)sin(2t) +C  =(t/2)−(1/2)sint cost +C  =((arcsinx)/2)−(x/2)(√(1−x^2 )) +C ⇒  I =x^2  arcosx +((arcsinx)/2)−(x/2)(√(1−x^2 )) +C
I=2xarcosxdxbypartsI=2{x22arcosx+x22dx1x2}=x2arcosx+x21x2dx}wehavex21x2dx=x=sintsin2tcostcostdt=sin2tdt=1cos(2t)2dt=t214sin(2t)+C=t212sintcost+C=arcsinx2x21x2+CI=x2arcosx+arcsinx2x21x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *