Menu Close

BeMath-4sin-2pi-7-sec-pi-14-cot-pi-7-




Question Number 107672 by bemath last updated on 12/Aug/20
     ♠BeMath♠      ((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7)))) ?
BeMath4sin(2π7)+sec(π14)cot(π7)?
Commented by Her_Majesty last updated on 12/Aug/20
2
2
Commented by ajfour last updated on 12/Aug/20
 Her MJS ty  would you please explain  this too.
HerMJStywouldyoupleaseexplainthistoo.
Answered by 1549442205PVT last updated on 12/Aug/20
We prove that  ((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7))))=2(∗)  ⇔tan((π/7))[4sin (((2π)/7))+sec ((π/(14)))]=2  ⇔4sin(π/7)cos(π/(14))sin((2π)/7)+sin(π/7)=2cos(π/7)cos(π/(14))  ⇔2(sin((3π)/(14))+sin(π/(14)))sin((2π)/7)+sin(π/7)  =cos((3π)/(14))+cos(π/(14))  ⇔(2sin((3π)/(14))sin((2π)/7))+(2sin((2π)/7)sin(π/(14)))sin((2π)/7)+sin(π/7)−(cos((3π)/(14))+cos(π/(14)))=0  ⇔cos(π/(14))−cos((7π)/(14))+cos((3π)/(14))−cos((5π)/(14))+sin(π/7)+sin((2π)/7)−(cos((3π)/(14))+cos(π/(14)))=0  ⇔sin(π/7)−cos((5π)/(14))=0(since cos((7π)/(14))=cos(π/2)=0)  This  equlity is always true since  sin(π/7)=cos((π/2)−(π/7))=cos((5π)/(14))  Thus,the equality (∗)proved
Weprovethat4sin(2π7)+sec(π14)cot(π7)=2()tan(π7)[4sin(2π7)+sec(π14)]=24sinπ7cosπ14sin2π7+sinπ7=2cosπ7cosπ142(sin3π14+sinπ14)sin2π7+sinπ7=cos3π14+cosπ14(2sin3π14sin2π7)+(2sin2π7sinπ14)sin2π7+sinπ7(cos3π14+cosπ14)=0cosπ14cos7π14+cos3π14cos5π14+sinπ7+sin2π7(cos3π14+cosπ14)=0sinπ7cos5π14=0(sincecos7π14=cosπ2=0)Thisequlityisalwaystruesincesinπ7=cos(π2π7)=cos5π14Thus,theequality()proved

Leave a Reply

Your email address will not be published. Required fields are marked *