Menu Close

bemath-dx-4-3-2x-1-3-1-4-




Question Number 111017 by bemath last updated on 01/Sep/20
    (√(bemath))  ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?
bemathdx432x34?
Answered by john santu last updated on 01/Sep/20
by letting ν = ((4−((3−2x))^(1/(3 )) ))^(1/(4 ))   ⇒ν^4 =4−((3−2x))^(1/(3 ))  ⇒3−2x = (4−ν^4 )^3   2x = 3−(4−ν^4 )^3   ⇒2dx = −3.(−4ν^3 )(4−ν^4 )^2  dν  I=∫ ((12ν^3 (4−ν^4 )^2 )/(2ν)) dν  I=6∫ν^2 (16−8ν^4 +ν^8 ) dν  I=6∫(16ν^2 −8ν^6 +ν^(10) )dν  I=6(((16ν^3 )/3)−(8/7)ν^7 +(1/(11))ν^(11) )+c  I=6(((4−((3−2x))^(1/(3 )) )^3 ))^(1/(4 ))  (((16)/3)−(8/7)(4−((3−2x))^(1/(3 )) )+(1/(11))(4−((3−2x))^(1/(3 )) )^2  )+ c
bylettingν=432x34ν4=432x332x=(4ν4)32x=3(4ν4)32dx=3.(4ν3)(4ν4)2dνI=12ν3(4ν4)22νdνI=6ν2(168ν4+ν8)dνI=6(16ν28ν6+ν10)dνI=6(16ν3387ν7+111ν11)+cI=6(432x3)34(16387(432x3)+111(432x3)2)+c
Answered by Dwaipayan Shikari last updated on 01/Sep/20
∫(dx/( ((4−a))^(1/4) ))                        3−2x=a^3     −2=3a^2 (da/dx)          −(1/2)∫((3a^2 da)/((4−a)^(1/4) ))           (4−a=t^4 ⇒−1=4t^3 (dt/da)  (3/2)∫((a^2 4t^3 dt)/t)=6∫t^2 (4−t^4 )^2 dt=6∫16t^2 −8t^6 +t^(10)   =32t^3 −((48)/7)t^7 +(6/(11))t^(11) +C  =32(4−a)^(3/4) −((48)/7)(4−a)^(7/4) +(6/(11))(4−a)^((11)/4) +C  =32(4−((3−2x))^(1/3) )^(3/4) −((48)/7)(4−((3−2x))^(1/3) )^(7/4) +(6/(11))(4−((3−2x))^(1/3) )^((11)/4) +C
dx4a432x=a32=3a2dadx123a2da(4a)14(4a=t41=4t3dtda32a24t3dtt=6t2(4t4)2dt=616t28t6+t10=32t3487t7+611t11+C=32(4a)34487(4a)74+611(4a)114+C=32(432x3)34487(432x3)74+611(432x3)114+C

Leave a Reply

Your email address will not be published. Required fields are marked *