Menu Close

bemath-find-the-value-of-m-1-6-tan-mpi-7-




Question Number 112067 by bemath last updated on 06/Sep/20
  (√(bemath −−−−■■))  find the value of Π_(m=1) ^6 tan (((mπ)/7)).
bemath◼◼findthevalueof6m=1tan(mπ7).
Commented by MJS_new last updated on 06/Sep/20
should be =0
shouldbe=0
Commented by bemath last updated on 06/Sep/20
why sir ? nothing choice answer 0
whysir?nothingchoiceanswer0
Commented by MJS_new last updated on 06/Sep/20
sorry the sum is 0 but the product is −7 as  Sir John Santu has shown
sorrythesumis0buttheproductis7asSirJohnSantuhasshown
Commented by bemath last updated on 06/Sep/20
thank you sir
thankyousir
Answered by john santu last updated on 06/Sep/20
 Π_(m=1) ^6 tan (((mπ)/7)) = ?  we have sin (nx) = 2^(m−1)  Π_(m=0) ^(n−1) sin (x+((mπ)/n))  when x→0 , S_n = Π_(m=1) ^(n−1) sin (((mπ)/n))=(n/2^(n−1) )  where n = 7 , thus S_7 = Π_(m=1) ^(7−1) sin(((mπ)/7))=(7/(64))   but we know relation cos x=sin ((π/2)−x)  cos (x+((mπ)/n))=−sin (x−(π/2)+((mπ)/n))  Π_(m=0) ^(n−1) cos (x+((mπ)/n))=(−1)^n  Π_(m=0) ^(n−1) sin (x−(π/2)+((mπ)/n))                     = (((−1)^n )/2^(n−1) ).sin (nx−((nπ)/2))                     = (((−1)^n )/2^(n−1) ). ((sin (nx−((nπ)/2)))/(cos x))  x→0 ; Q_n = Π_(m=1) ^(n−1) cos (((mπ)/n))=(((−1)^(n+1) )/2^(n−1) ).sin (((nπ)/2))  put n= 7 ; Q_7 =Π_(m=1) ^(7−1) cos (((mπ)/7))=(((−1)^8 )/2^6 ).sin (((7π)/2))=−(1/(64))  therefore Π_(m=1) ^6 tan (((mπ)/7)) = ((((7/(64))))/((−(1/(64)))))=−7
6m=1tan(mπ7)=?wehavesin(nx)=2m1n1m=0sin(x+mπn)whenx0,Sn=n1m=1sin(mπn)=n2n1wheren=7,thusS7=71m=1sin(mπ7)=764butweknowrelationcosx=sin(π2x)cos(x+mπn)=sin(xπ2+mπn)n1m=0cos(x+mπn)=(1)nn1m=0sin(xπ2+mπn)=(1)n2n1.sin(nxnπ2)=(1)n2n1.sin(nxnπ2)cosxx0;Qn=n1m=1cos(mπn)=(1)n+12n1.sin(nπ2)putn=7;Q7=71m=1cos(mπ7)=(1)826.sin(7π2)=164therefore6m=1tan(mπ7)=(764)(164)=7
Commented by bemath last updated on 06/Sep/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *