Menu Close

bemath-Given-f-x-2x-3-g-f-x-2x-1-find-f-g-2-




Question Number 106707 by bemath last updated on 06/Aug/20
    @bemath@  Given  { ((f(x)=2x+3)),(((g○f)(x)=2x−1)) :}  find (f○g)(2).
$$\:\:\:\:@\mathrm{bemath}@ \\ $$$$\mathcal{G}\mathrm{iven}\:\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{3}}\\{\left(\mathrm{g}\circ\mathrm{f}\right)\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\left(\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{2}\right). \\ $$
Answered by john santu last updated on 06/Aug/20
Answered by mathmax by abdo last updated on 06/Aug/20
f(x)=2x+3 and g(f(x)) =2x−1 ⇒g(2x+3) =2x−1  let 2x+3 =t ⇒x =((t−3)/2) ⇒g(t) =2(((t−3)/2))−1 =t−4  g(t) =t−4 ⇒fog(2) =f(g(2)) =f(−2) =−4+3 =−1 ⇒  fog(2)=−1
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{3}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\mathrm{2x}−\mathrm{1}\:\Rightarrow\mathrm{g}\left(\mathrm{2x}+\mathrm{3}\right)\:=\mathrm{2x}−\mathrm{1} \\ $$$$\mathrm{let}\:\mathrm{2x}+\mathrm{3}\:=\mathrm{t}\:\Rightarrow\mathrm{x}\:=\frac{\mathrm{t}−\mathrm{3}}{\mathrm{2}}\:\Rightarrow\mathrm{g}\left(\mathrm{t}\right)\:=\mathrm{2}\left(\frac{\mathrm{t}−\mathrm{3}}{\mathrm{2}}\right)−\mathrm{1}\:=\mathrm{t}−\mathrm{4} \\ $$$$\mathrm{g}\left(\mathrm{t}\right)\:=\mathrm{t}−\mathrm{4}\:\Rightarrow\mathrm{fog}\left(\mathrm{2}\right)\:=\mathrm{f}\left(\mathrm{g}\left(\mathrm{2}\right)\right)\:=\mathrm{f}\left(−\mathrm{2}\right)\:=−\mathrm{4}+\mathrm{3}\:=−\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{fog}\left(\mathrm{2}\right)=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *