Menu Close

bemath-given-f-x-log-2-sin-x-log-2-cos-x-g-x-log-2-cos-2x-log-2-cos-4x-find-f-pi-48-g-pi-48-




Question Number 106888 by bemath last updated on 07/Aug/20
@bemath@  given  { ((f(x)=log _2 (sin x)+log _2 (cos x))),((g(x)=log _2 (cos 2x)+log _2 (cos 4x))) :}  find f((π/(48)))+g((π/(48))) .
@bemath@given{f(x)=log2(sinx)+log2(cosx)g(x)=log2(cos2x)+log2(cos4x)findf(π48)+g(π48).
Answered by Dwaipayan Shikari last updated on 07/Aug/20
f(x)=log_2 (sin2x)−1  g(x)=log_2 (cos2x)+log_2 (cos4x)  f(x)+g(x)=log_2 (sin2x)+log_2 (cos4x)+log(cos2x)−1  f(x)+g(x)=log_2 (sin4x)+log_2 (cos4x)−3  f((π/(48)))+g((π/(48)))=log_2 (sin8x)−2=l                                                                     =log_2 ((1/2))−3=−4
f(x)=log2(sin2x)1g(x)=log2(cos2x)+log2(cos4x)f(x)+g(x)=log2(sin2x)+log2(cos4x)+log(cos2x)1f(x)+g(x)=log2(sin4x)+log2(cos4x)3f(π48)+g(π48)=log2(sin8x)2=l=log2(12)3=4
Commented by Dwaipayan Shikari last updated on 07/Aug/20
Oh i put cos4x instead of sin4x.typo
Ohiputcos4xinsteadofsin4x.typo
Commented by bemath last updated on 07/Aug/20
wrong sir. please check
wrongsir.pleasecheck
Commented by Dwaipayan Shikari last updated on 07/Aug/20
Thanking  for your correction
Thankingforyourcorrection
Answered by bemath last updated on 07/Aug/20
     @bemath@  f(x)+g(x)=log _2 (sin 2x)+log _2 (cos 2x)+log _2 (cos 4x)−1  = log _2 (sin 4x)+log _2 (cos 4x)−2  =log _2 (sin 8x)−3  f((π/(48)))+g((π/(48)))=log _2 (sin (π/6))−3  =log _2 ((1/2))−3=−4
@bemath@f(x)+g(x)=log2(sin2x)+log2(cos2x)+log2(cos4x)1=log2(sin4x)+log2(cos4x)2=log2(sin8x)3f(π48)+g(π48)=log2(sinπ6)3=log2(12)3=4

Leave a Reply

Your email address will not be published. Required fields are marked *