Menu Close

BeMath-Given-tan-x-sec-x-then-sin-x-




Question Number 107900 by bemath last updated on 13/Aug/20
       ((Σ BeMath Σ)/□)    Given tan x−sec x = ϑ    then sin x = ?
ΣBeMathΣ◻Giventanxsecx=ϑthensinx=?
Answered by bemath last updated on 13/Aug/20
((sin x−1)/(cos x)) = υ ⇒ sin x−1=υ cos x ...(1)  sin x +1 = −(1/υ) cos x ...(2)  substitute eq (2) to eq(1)  sin x+1 = −(1/υ) (((sin x−1)/υ))  υ^2  sin x + υ^2  = −sin x +1   (υ^2 +1)sin x = 1−υ^2    ⇒ sin x = ((1−υ^2 )/(1+υ^2 ))
sinx1cosx=υsinx1=υcosx(1)sinx+1=1υcosx(2)substituteeq(2)toeq(1)sinx+1=1υ(sinx1υ)υ2sinx+υ2=sinx+1(υ2+1)sinx=1υ2sinx=1υ21+υ2
Answered by bobhans last updated on 13/Aug/20
     ((∧Bobhans∧)/□)  tan x−sec x ×(((tan x+sec x)/(tan x+sec x)))= υ  ((tan^2 x−sec^2 x)/(tan x+sec x)) = υ →((tan^2 x−(1+tan^2 x))/(tan x+sec c))=υ  tan x+sec x = −(1/υ) ⇒ ((sin x+1)/(cos x)) = −(1/υ)  sin x+1 = −(1/υ)cos x
Bobhans◻tanxsecx×(tanx+secxtanx+secx)=υtan2xsec2xtanx+secx=υtan2x(1+tan2x)tanx+secc=υtanx+secx=1υsinx+1cosx=1υsinx+1=1υcosx

Leave a Reply

Your email address will not be published. Required fields are marked *