Menu Close

BeMath-I-0-pi-x-dx-1-sin-x-




Question Number 108391 by bemath last updated on 16/Aug/20
   ((∡ BeMath ∡)/▽)  I = ∫_0 ^π  ((x dx)/(1+sin x))
BeMathI=π0xdx1+sinx
Answered by bobhans last updated on 16/Aug/20
Commented by khanshadab2405 last updated on 16/Aug/20
1/√1²+cot²∅
Commented by bobhans last updated on 16/Aug/20
typo I = (1/2)∫_(−π/4) ^(π/4) (4w+π)sec^2 w dw   I = (1/2)×2π = π
typoI=12π/4π/4(4w+π)sec2wdwI=12×2π=π
Answered by Dwaipayan Shikari last updated on 16/Aug/20
∫_0 ^π ((xdx)/(1+sinx))=∫_0 ^π ((π−x)/(1+sinx))dx=I  2I=∫_0 ^π (π/(1+sinx))dx  2I=2π∫_0 ^∞ (1/(1+((2t)/(1+t^2 )))).(1/(1+t^2 ))dt       (tan(x/2)=t  2I=2π∫_0 ^∞ (1/((1+t)^2 ))  I=π[−(1/(1+t))]_0 ^∞   I=π
0πxdx1+sinx=0ππx1+sinxdx=I2I=0ππ1+sinxdx2I=2π011+2t1+t2.11+t2dt(tanx2=t2I=2π01(1+t)2I=π[11+t]0I=π
Answered by mnjuly1970 last updated on 16/Aug/20
I=∫_0 ^( π) (((π−x)dx)/(1+sin(π−x)))dx  ⇒2I=π∫_0 ^( π) ((1−sin(x))/(cos^2 (x)))dx  2I=π([tan(x)]_0 ^π −[(1/(cos(x)))]_0 ^( π) )=π(2)       I=π   ♣...........♣
I=0π(πx)dx1+sin(πx)dx2I=π0π1sin(x)cos2(x)dx2I=π([tan(x)]0π[1cos(x)]0π)=π(2)I=π..
Answered by mathmax by abdo last updated on 16/Aug/20
I =∫_0 ^π   ((xdx)/(1+sinx))  changement x=π−t give  I =∫_0 ^π   (((π−t))/(1+sint))dt =π ∫_0 ^π  (dt/(1+sint))−I ⇒2I =π∫_0 ^π  (dt/(1+sint))  =_(tan((t/2))=u)    π ∫_0 ^∞    ((2du)/((1+u^2 )(1+((2u)/(1+u^2 )))))  =2π ∫_0 ^∞    (du/(1+u^2  +2u)) =2π ∫_0 ^∞   (du/((u+1)^2 )) =2π[−(1/(u+1))]_0 ^(+∞)  =2π ⇒  2I =2π ⇒ I =π
I=0πxdx1+sinxchangementx=πtgiveI=0π(πt)1+sintdt=π0πdt1+sintI2I=π0πdt1+sint=tan(t2)=uπ02du(1+u2)(1+2u1+u2)=2π0du1+u2+2u=2π0du(u+1)2=2π[1u+1]0+=2π2I=2πI=π
Answered by mathmax by abdo last updated on 16/Aug/20
another way  changement  tan((x/2))=t  give  I =∫_0 ^∞     ((2arctan(t))/((1+((2t)/(1+t^2 )))))((2dt)/(1+t^2 )) =4∫_0 ^∞    ((arctant)/(1+t^2  +2t))dt  =4∫_0 ^∞   ((arctant)/((t+1)^2 ))dt =_(byparts)    4{[−((arctant)/(t+1))]_0 ^(+∞) +∫_0 ^∞   (1/(t+1))(dt/(1+t^2 ))}  =4 ∫_0 ^∞   (dt/((t+1)(t^2 +1)))  let decompose F(t) =(1/((t+1)(t^2 +1)))  F(t) =(a/(t+1)) +((bt +c)/(t^2  +1))  a =(1/2) ,  lim_(t→+∞) tF(t) =0 =a+b ⇒b=−(1/2)  F(0) =1 =a +c ⇒c=1−a =(1/2) ⇒F(t)=(1/(2(t+1)))+((−(1/2)t +(1/2))/(t^2  +1)) ⇒  ∫_0 ^∞ F(t)dt =(1/2)∫_0 ^∞ (dt/(t+1))−(1/4)∫_0 ^∞ ((2t)/(t^2 +1)) +(1/2)∫_0 ^∞  (dt/(1+t^2 ))  =[(1/2)ln(t+1)−(1/4)ln(t^2 +1)]_0 ^∞  +(1/2)[arctant]_0 ^∞   =[ln(((√(t+1))/((^4 (√(t^2 +1))))))]_0 ^(+∞)  +(1/2){(π/2)} =(π/4) ⇒I =4.(π/4) ⇒I =π
anotherwaychangementtan(x2)=tgiveI=02arctan(t)(1+2t1+t2)2dt1+t2=40arctant1+t2+2tdt=40arctant(t+1)2dt=byparts4{[arctantt+1]0++01t+1dt1+t2}=40dt(t+1)(t2+1)letdecomposeF(t)=1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=12,limt+tF(t)=0=a+bb=12F(0)=1=a+cc=1a=12F(t)=12(t+1)+12t+12t2+10F(t)dt=120dtt+11402tt2+1+120dt1+t2=[12ln(t+1)14ln(t2+1)]0+12[arctant]0=[ln(t+1(4t2+1))]0++12{π2}=π4I=4.π4I=π

Leave a Reply

Your email address will not be published. Required fields are marked *