Menu Close

BEMATH-If-tan-x-sec-x-b-cos-x-




Question Number 107364 by bemath last updated on 10/Aug/20
      ⊚BEMATH⊚   If tan x+sec x = b ⇒ cos x = ?
BEMATHIftanx+secx=bcosx=?
Answered by bobhans last updated on 10/Aug/20
      ⇛BOBHANS⇚  ((tan x−sec x)/(tan x−sec x)) × tan x+sec x = ♭  ((tan^2 x−sec^2 x)/(tan x−sec x)) = ♭ ⇔ ((−1)/(tan x−sec x)) = ♭  tan x−sec x = −(1/♭)  tan x + sec x = ♭  _______________ −   −2sec x = −(1/♭)−♭ ⇒sec x = ((♭^2 +1)/(2♭))  ⇔ ∴ cos x = ((2♭)/(♭^2 +1))
BOBHANStanxsecxtanxsecx×tanx+secx=tan2xsec2xtanxsecx=1tanxsecx=tanxsecx=1tanx+secx=_______________2secx=1secx=2+12cosx=22+1
Answered by som(math1967) last updated on 10/Aug/20
sec^2 x−tan^2 x=1  ⇒secx−tanx=(1/b) [∵secx+tanx=b]  ∴2secx=b+(1/b)  secx=((b^2 +1)/(2b)) ∴cosx=((2b)/(b^2 +1)) ans
sec2xtan2x=1secxtanx=1b[secx+tanx=b]2secx=b+1bsecx=b2+12bcosx=2bb2+1ans
Answered by Dwaipayan Shikari last updated on 10/Aug/20
sec^2 x−tan^2 x=1  b(tanx−secx)=−1  tanx+secx=b  tanx−secx=−(1/b)  2secx=b+(1/b)  cosx=((2b)/(b^2 +1))
sec2xtan2x=1b(tanxsecx)=1tanx+secx=btanxsecx=1b2secx=b+1bcosx=2bb2+1
Answered by Dwaipayan Shikari last updated on 10/Aug/20
tan^2 x+sec^2 x+2tanxsecx=b^2   2tan^2 x+1+2tanxsecx=b^2   2tanx(tanx+secx)=b^2 −1  tanx=((b^2 −1)/(2b))  ((sin^2 x)/(cos^2 x))+1=(((b^2 −1)^2 )/(4b^2 ))+1  (1/(cos^2 x))=(((b^2 +1)^2 )/(4b^2 ))  cosx=((2b)/(b^2 +1))
tan2x+sec2x+2tanxsecx=b22tan2x+1+2tanxsecx=b22tanx(tanx+secx)=b21tanx=b212bsin2xcos2x+1=(b21)24b2+11cos2x=(b2+1)24b2cosx=2bb2+1

Leave a Reply

Your email address will not be published. Required fields are marked *