Menu Close

BeMath-If-x-4-x-2-11-5-find-the-value-of-x-1-x-1-1-3-x-1-x-1-1-3-




Question Number 108316 by bemath last updated on 16/Aug/20
    ((▽BeMath▽)/△)  If x^4 +x^2  = ((11)/5) , find the value of  Ω = (((x+1)/(x−1)))^(1/3)  + (((x−1)/(x+1)))^(1/3)
BeMathIfx4+x2=115,findthevalueofΩ=x+1x13+x1x+13
Answered by bobhans last updated on 16/Aug/20
    ((bobhans)/𝛙)  consider (x)^(1/3)  +(y)^(1/3)  = ((x+y)/( (x^2 )^(1/3) −((xy))^(1/3) +(y^2 )^(1/3) ))  now (((x+1)/(x−1)))^(1/3) +(((x−1)/(x+1)))^(1/3)  = ((((x+1)/(x−1))+((x−1)/(x+1)))/( (((((x+1)/(x−1)))^2 ))^(1/3) +(((((x−1)/(x+1)))^2 ))^(1/3) −1))  =((2x^2 +2)/((x^2 −1){(((((x+1)/(x−1)))^2 ))^(1/3) +(((((x−1)/(x+1)))^2 ))^(1/3) −1}))  (∗)from the equation x^4 +x^2 =((11)/5)  let x^2 =z ⇒5z^2 +5z−11=0  z= ((−5 ± (√(25+220)))/(10)) = ((−5 ± 7(√5))/(10))  if x∈R , we take z = ((−5 + 7(√5))/(10)) ≈ 1.065  and x = (√(1.065)) ≈ 1.032
bobhansψconsiderx3+y3=x+yx23xy3+y23nowx+1x13+x1x+13=x+1x1+x1x+1(x+1x1)23+(x1x+1)231=2x2+2(x21){(x+1x1)23+(x1x+1)231}()fromtheequationx4+x2=115letx2=z5z2+5z11=0z=5±25+22010=5±7510ifxR,wetakez=5+75101.065andx=1.0651.032
Answered by Rasheed.Sindhi last updated on 16/Aug/20
x^4 +x^2  = ((11)/5)⇒x^2 =((−5±7(√5))/(10))  Ω = (((x+1)/(x−1)))^(1/3)  + (((x−1)/(x+1)))^(1/3)    Ω^3  =( (((x+1)/(x−1)))^(1/3)  + (((x−1)/(x+1)))^(1/3)  )^3   =((x+1)/(x−1))+((x−1)/(x+1))+3((((x+1)/(x−1)))^(1/3)  + (((x−1)/(x+1)))^(1/3)  )  Ω^3 −3Ω=((2(x^2 +1))/(x^2 −1))             =2(((((−5±7(√5))/(10))+1)/(((−5±7(√5))/(10))−1)))=2(((5±7(√5))/(−15±7(√5))))     =2(((5±7(√5))/(−15±7(√5)))×((−15∓7(√5))/(−15∓7(√5))))    =2(((−75∓35(√5)∓105(√5) −49(5))/(225−49(5))))  =((320±140(√5) )/(10))=32±14(√5)
x4+x2=115x2=5±7510Ω=x+1x13+x1x+13Ω3=(x+1x13+x1x+13)3=x+1x1+x1x+1+3(x+1x13+x1x+13)Ω33Ω=2(x2+1)x21=2(5±7510+15±75101)=2(5±7515±75)=2(5±7515±75×15751575)=2(75355105549(5)22549(5))=320±140510=32±145
Commented by bemath last updated on 16/Aug/20
coll and nice
collandnice
Answered by mr W last updated on 16/Aug/20
x^4 +x^2 −((11)/5)=0  x^2 =(1/2)(−1+(√(1+((44)/5))))=((7(√5)−5)/(10))>0  ((x^2 +1)/(x^2 −1))=((7(√5)+5)/(7(√5)−15))=16+7(√5)    (a+b)^3 =a^3 +b^3 +3ab(a+b)  let a=(((x+1)/(x−1)))^(1/3) , b=(((x−1)/(x+1)))^(1/3)   Ω^3 =2×((x^2 +1)/(x^2 −1))+3Ω  ⇒Ω^3 −3Ω−2λ=0 with λ=((x^2 +1)/(x^2 −1))=16+7(√5)  Δ=(−1)^3 +(−λ)^2 =4(125+56(√5))>0  Ω=(((√Δ)+λ))^(1/3) −(((√Δ)−λ))^(1/3)   =((2(√(125+56(√5)))+16+7(√5)))^(1/3) −((2(√(125+56(√7)))−16−7(√5)))^(1/3)   ≈4.236068
x4+x2115=0x2=12(1+1+445)=75510>0x2+1x21=75+57515=16+75(a+b)3=a3+b3+3ab(a+b)leta=x+1x13,b=x1x+13Ω3=2×x2+1x21+3ΩΩ33Ω2λ=0withλ=x2+1x21=16+75Δ=(1)3+(λ)2=4(125+565)>0Ω=Δ+λ3Δλ3=2125+565+16+7532125+567167534.236068

Leave a Reply

Your email address will not be published. Required fields are marked *