Menu Close

BeMath-lim-n-n-ln-a-n-n-b-




Question Number 108228 by bemath last updated on 15/Aug/20
  ((⋎BeMath⋎)/⋔)   lim_(n→∞)  (((n+ln a)/n))^(n/b) ?
BeMathlimn(n+lnan)nb?
Answered by Dwaipayan Shikari last updated on 15/Aug/20
lim_(n→∞) (1+((loga)/n))^(((nloga)/(loga)).(1/b))   =e^((loga)/b) =a^(1/b)
limn(1+logan)nlogaloga.1b=elogab=a1b
Answered by john santu last updated on 15/Aug/20
   ((⋇JS⋇)/♥)  L =lim_(n→∞) (((n+ln a)/n))^(n/b)   ln L = lim_(n→∞) (n/b)ln (1+((ln a)/n))  set x = (1/n)→ { ((n→∞)),((x→0)) :}  ln L=lim_(x→0) (( ln (1+x.ln a))/(bx))  by L′Hopital rule  ln L=lim_(x→0) (((((ln a)/(1+x.ln a))))/b)=lim_(x→0) (((ln a)/(b(1+x.ln a))))  ln L = ((ln a)/b) = ln (a)^(1/b)   therefore L = a^(1/b)
JSL=limn(n+lnan)nblnL=limnnbln(1+lnan)setx=1n{nx0lnL=limx0ln(1+x.lna)bxbyLHopitalrulelnL=limx0(lna1+x.lna)b=limx0(lnab(1+x.lna))lnL=lnab=ln(a)1bthereforeL=a1b
Answered by bemath last updated on 16/Aug/20
lim_(n→∞)  [ (1+(1/(((n/(ln a))))))^(n/(ln a))  ]^((1/b).((ln a)/1))   = e^((ln a)/b)  = e^(ln (a)^(1/b)  ) = (a)^(1/b) =(a)^(1/b)  .
limn[(1+1(nlna))nlna]1b.lna1=elnab=eln(a)1b=(a)1b=ab.

Leave a Reply

Your email address will not be published. Required fields are marked *