Question Number 108228 by bemath last updated on 15/Aug/20
$$\:\:\frac{\curlyvee\mathcal{B}{e}\mathcal{M}{ath}\curlyvee}{\pitchfork} \\ $$$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{n}+\mathrm{ln}\:{a}}{{n}}\right)^{\frac{{n}}{{b}}} ?\: \\ $$
Answered by Dwaipayan Shikari last updated on 15/Aug/20
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{{loga}}{{n}}\right)^{\frac{{nloga}}{{loga}}.\frac{\mathrm{1}}{{b}}} \\ $$$$={e}^{\frac{{loga}}{{b}}} ={a}^{\frac{\mathrm{1}}{{b}}} \\ $$
Answered by john santu last updated on 15/Aug/20
$$\:\:\:\frac{\divideontimes{JS}\divideontimes}{\heartsuit} \\ $$$${L}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}+\mathrm{ln}\:{a}}{{n}}\right)^{\frac{{n}}{{b}}} \\ $$$$\mathrm{ln}\:{L}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}}{{b}}\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{ln}\:{a}}{{n}}\right) \\ $$$${set}\:{x}\:=\:\frac{\mathrm{1}}{{n}}\rightarrow\begin{cases}{{n}\rightarrow\infty}\\{{x}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\:\mathrm{ln}\:\left(\mathrm{1}+{x}.\mathrm{ln}\:{a}\right)}{{bx}} \\ $$$${by}\:{L}'{Hopital}\:{rule} \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{ln}\:{a}}{\mathrm{1}+{x}.\mathrm{ln}\:{a}}\right)}{{b}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{ln}\:{a}}{{b}\left(\mathrm{1}+{x}.\mathrm{ln}\:{a}\right)}\right) \\ $$$$\mathrm{ln}\:{L}\:=\:\frac{\mathrm{ln}\:{a}}{{b}}\:=\:\mathrm{ln}\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} \\ $$$${therefore}\:{L}\:=\:{a}^{\frac{\mathrm{1}}{{b}}} \\ $$
Answered by bemath last updated on 16/Aug/20
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{{n}}{\mathrm{ln}\:{a}}\right)}\right)^{\frac{{n}}{\mathrm{ln}\:{a}}} \:\right]^{\frac{\mathrm{1}}{{b}}.\frac{\mathrm{ln}\:{a}}{\mathrm{1}}} \\ $$$$=\:{e}\:^{\frac{\mathrm{ln}\:{a}}{{b}}} \:=\:{e}^{\mathrm{ln}\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} \:} =\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} =\sqrt[{{b}}]{{a}}\:. \\ $$