Menu Close

BeMath-lim-t-0-1-cos-2t-sin-pi-2-t-cos-2t-




Question Number 107516 by bemath last updated on 11/Aug/20
    ⊚BeMath⊚   lim_(t→0)  ((1−(√(cos 2t)))/(sin ((π/2)−t)−cos 2t)) ?
BeMathlimt01cos2tsin(π2t)cos2t?
Answered by bemath last updated on 11/Aug/20
lim_(t→0)  ((1−cos 2t)/(cos t−cos 2t)) × lim_(t→0)  (1/(1+(√(cos 2t))))  = (1/2) × lim_(t→0)  ((2sin^2 t)/(−2sin ((3/2)t)(sin −(t/2))))  =(1/2)×lim_(t→0)  ((2sin^2 t)/(2sin (((3t)/2))sin ((t/2))))  =(1/2)×(4/3)=(2/3)
limt01cos2tcostcos2t×limt011+cos2t=12×limt02sin2t2sin(32t)(sint2)=12×limt02sin2t2sin(3t2)sin(t2)=12×43=23
Answered by Dwaipayan Shikari last updated on 11/Aug/20
lim_(t→0) ((1−(√(1−((4t^2 )/2))))/(cost−cos2t))=lim_(t→0) ((1−1+t^2 )/(1−(t^2 /2)−1+((4t^2 )/2)))=lim_(x→0) (t^2 /((3t^2 )/2))=(2/3)
limt0114t22costcos2t=limt011+t21t221+4t22=limx0t23t22=23
Answered by mathmax by abdo last updated on 11/Aug/20
let f(t) =((1−(√(cos(2t))))/(sin((π/2)−t)−cos(2t))) we have cos(2t) ∼1−2t^2   ⇒(√(cos(2t)))∼1−t^2  ⇒1−(√(cos(2t)))∼t^2   also sin((π/2)−t) =cost ∼1−(t^2 /2) ⇒  sin((π/2)−t)−cos(2t) ∼ 1−(t^2 /2) −1+2t^2  =(3/2)t^2  ⇒f(t) ∼ (3/2) ⇒  lim_(t→0) f(t) =(3/2)
letf(t)=1cos(2t)sin(π2t)cos(2t)wehavecos(2t)12t2cos(2t)1t21cos(2t)t2alsosin(π2t)=cost1t22sin(π2t)cos(2t)1t221+2t2=32t2f(t)32limt0f(t)=32
Commented by mathmax by abdo last updated on 11/Aug/20
sorry f(x)∼(2/3) ⇒lim_(t→0) f(x) =(2/3)
sorryf(x)23limt0f(x)=23

Leave a Reply

Your email address will not be published. Required fields are marked *