Menu Close

bemath-lim-x-0-1-2sin-x-1-4sin-4x-4x-




Question Number 106633 by bemath last updated on 06/Aug/20
        ^(@bemath@)   lim_(x→0)  (((√(1+2sin x)) −(√(1−4sin 4x)))/(4x))
@bemath@limx01+2sinx14sin4x4x
Answered by john santu last updated on 06/Aug/20
       _(@JS@)   lim_(x→0)  (((1+((2sin x)/2))−(1−((4sin 4x)/2)))/(4x))=  lim_(x→0)  ((sin x+2sin 4x)/(4x)) = (9/4)
@JS@limx0(1+2sinx2)(14sin4x2)4x=limx0sinx+2sin4x4x=94
Answered by Dwaipayan Shikari last updated on 06/Aug/20
lim_(x→0) ((1+sinx−1+2sin4x)/(4x))  lim_(x→0) ((x+8x)/(4x))  =(9/4)           sinx→x   ,sin4x→4x
limx01+sinx1+2sin4x4xlimx0x+8x4x=94sinxx,sin4x4x
Answered by Dwaipayan Shikari last updated on 06/Aug/20
lim_(x→0) ((1+2sinx−1+4sin4x)/(4x)).(1/( (√(1+2sinx))+(√(1−4sin4x))))  lim_(x→0) (1/4)(((2sinx)/x)+((16sin4x)/(4x))).(1/2)  (1/4)(18.(1/2))=(9/4)
limx01+2sinx1+4sin4x4x.11+2sinx+14sin4xlimx014(2sinxx+16sin4x4x).1214(18.12)=94

Leave a Reply

Your email address will not be published. Required fields are marked *