Question Number 106614 by bemath last updated on 06/Aug/20

Answered by Dwaipayan Shikari last updated on 06/Aug/20

Commented by bemath last updated on 06/Aug/20

Commented by Dwaipayan Shikari last updated on 06/Aug/20

Commented by bemath last updated on 06/Aug/20

Answered by john santu last updated on 06/Aug/20

Answered by 1549442205PVT last updated on 06/Aug/20
![Multiplying nominator and deminator by conjulate expression we get ((((1+3sin x ))^(1/3) −((1+sin 3x))^(1/3) )/(2x)) =(((1−3sinx)−(1+sin3x))/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ])) ==((3sinx−sin3x)/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ])) =(([3sinx−(3sinx−4sin^3 x])/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ])) =((sinx)/x)×((4sin^2 x)/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ])) Hence,lim_(x→0) ((((1+3sin x ))^(1/3) −((1+sin 3x))^(1/3) )/(2x))= lim_(x→0) =((sinx)/x)×((4sin^2 x)/([(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ])) =1×(0/(1+1+1))=0](https://www.tinkutara.com/question/Q106643.png)