Menu Close

bemath-lim-x-0-1-3sin-x-1-3-1-sin-3x-1-3-2x-




Question Number 106614 by bemath last updated on 06/Aug/20
      _(@bemath@)   lim_(x→0) ((((1+3sin x ))^(1/3)  −((1+sin 3x))^(1/3) )/(2x)) =?
@bemath@limx01+3sinx31+sin3x32x=?
Answered by Dwaipayan Shikari last updated on 06/Aug/20
lim_(x→0) ((1+sinx−1−((sin3x)/3))/(2x))=((x−(x^3 /(3!))−((3x)/3)+(((3x)^3 )/(3.3!)))/(2x))=((((9x^3 )/6)−(x^3 /6))/(2x))=((4x^2 )/6)=0
limx01+sinx1sin3x32x=xx33!3x3+(3x)33.3!2x=9x36x362x=4x26=0
Commented by bemath last updated on 06/Aug/20
sin x = x−(x^3 /(3!))+...?
sinx=xx33!+?
Commented by Dwaipayan Shikari last updated on 06/Aug/20
Oh i edited my error
Ohieditedmyerror
Commented by bemath last updated on 06/Aug/20
thank you
thankyou
Answered by john santu last updated on 06/Aug/20
lim_(x→0)  (((1+((3sin x)/3))−(1+((sin 3x)/3)))/(2x))=  lim_(x→0)  (((x−(x^3 /6))−(((3x−((27x^3 )/6))/3)))/(2x))=  lim_(x→0)  ((−(x^3 /6)+((9x^3 )/6))/(2x))=lim_(x→0)  ((4x^3 )/(6x)) = 0.      @JS@
limx0(1+3sinx3)(1+sin3x3)2x=limx0(xx36)(3x27x363)2x=limx0x36+9x362x=limx04x36x=0.@JS@
Answered by 1549442205PVT last updated on 06/Aug/20
 Multiplying nominator and deminator by conjulate expression we get   ((((1+3sin x ))^(1/3)  −((1+sin 3x))^(1/3) )/(2x))   =(((1−3sinx)−(1+sin3x))/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ]))  ==((3sinx−sin3x)/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ]))  =(([3sinx−(3sinx−4sin^3 x])/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ]))  =((sinx)/x)×((4sin^2 x)/(x[(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ]))  Hence,lim_(x→0) ((((1+3sin x ))^(1/3)  −((1+sin 3x))^(1/3) )/(2x))=  lim_(x→0) =((sinx)/x)×((4sin^2 x)/([(^3 (√(1+3sinx)))^2 +^3 (√((1+3sinx)(1+sin3x)))+(^3 (√(1+sin3x)))^2 ]))  =1×(0/(1+1+1))=0
Multiplyingnominatoranddeminatorbyconjulateexpressionweget1+3sinx31+sin3x32x=(13sinx)(1+sin3x)x[(31+3sinx)2+3(1+3sinx)(1+sin3x)+(31+sin3x)2]==3sinxsin3xx[(31+3sinx)2+3(1+3sinx)(1+sin3x)+(31+sin3x)2]=[3sinx(3sinx4sin3x]x[(31+3sinx)2+3(1+3sinx)(1+sin3x)+(31+sin3x)2]=sinxx×4sin2xx[(31+3sinx)2+3(1+3sinx)(1+sin3x)+(31+sin3x)2]Hence,limx01+3sinx31+sin3x32x=limx0=sinxx×4sin2x[(31+3sinx)2+3(1+3sinx)(1+sin3x)+(31+sin3x)2]=1×01+1+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *