Menu Close

bemath-lim-x-0-1-x-sin-1-x-1-x-2-




Question Number 111326 by bemath last updated on 03/Sep/20
    (√(bemath))    lim_(x→0)  ((1/(x sin^(−1) (x))) − (1/x^2 ) ) =?
bemathlimx0(1xsin1(x)1x2)=?
Answered by john santu last updated on 03/Sep/20
      JS^(−−−−−−−−) ★  let sin^(−1) (x)= p ⇒x = sin p    lim_(p→0)  ((1/(p sin p)) − (1/(sin^2 p))) =     lim_(p→0) (((sin p−p)/(psin^2 p))) =   lim_(p→0)  (((cos p−1)/(3p^2 )))= lim_(p→0)  (((−2sin^2 ((p/2)))/(3p^2 )))   = −(2/3)×(1/4) = −(1/6)
JSletsin1(x)=px=sinplimp0(1psinp1sin2p)=limp0(sinpppsin2p)=limp0(cosp13p2)=limp0(2sin2(p2)3p2)=23×14=16
Commented by bemath last updated on 03/Sep/20
Answered by Dwaipayan Shikari last updated on 03/Sep/20
lim_(x→0) ((1/(x(x+(x^3 /6))))−(1/(x.x)))=(1/x)(((x−x−(x^3 /6))/(x(x+(x^3 /6)))))=((−(x/6))/(x+(x^3 /6)))=−(1/6)
limx0(1x(x+x36)1x.x)=1x(xxx36x(x+x36))=x6x+x36=16

Leave a Reply

Your email address will not be published. Required fields are marked *